用张量处理单元加速物理模拟:一个洪水建模的例子

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE International Journal of High Performance Computing Applications Pub Date : 2022-06-03 DOI:10.1177/10943420221102873
R. Hu, D. Pierce, Yusef Shafi, Anudhyan Boral, V. Anisimov, Sella Nevo, Yi-Fan Chen
{"title":"用张量处理单元加速物理模拟:一个洪水建模的例子","authors":"R. Hu, D. Pierce, Yusef Shafi, Anudhyan Boral, V. Anisimov, Sella Nevo, Yi-Fan Chen","doi":"10.1177/10943420221102873","DOIUrl":null,"url":null,"abstract":"Recent advancements in hardware accelerators such as Tensor Processing Units (TPUs) speed up computation time relative to Central Processing Units (CPUs) not only for machine learning but, as demonstrated here, also for scientific modeling and computer simulations. To study TPU hardware for distributed scientific computing, we solve partial differential equations (PDEs) for the physics simulation of fluids to model riverine floods. We demonstrate that TPUs achieve a two orders of magnitude speedup over CPUs. Running physics simulations on TPUs is publicly accessible via the Google Cloud Platform, and we release a Python interactive notebook version of the simulation.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"510 - 523"},"PeriodicalIF":3.5000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accelerating physics simulations with tensor processing units: An inundation modeling example\",\"authors\":\"R. Hu, D. Pierce, Yusef Shafi, Anudhyan Boral, V. Anisimov, Sella Nevo, Yi-Fan Chen\",\"doi\":\"10.1177/10943420221102873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in hardware accelerators such as Tensor Processing Units (TPUs) speed up computation time relative to Central Processing Units (CPUs) not only for machine learning but, as demonstrated here, also for scientific modeling and computer simulations. To study TPU hardware for distributed scientific computing, we solve partial differential equations (PDEs) for the physics simulation of fluids to model riverine floods. We demonstrate that TPUs achieve a two orders of magnitude speedup over CPUs. Running physics simulations on TPUs is publicly accessible via the Google Cloud Platform, and we release a Python interactive notebook version of the simulation.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"36 1\",\"pages\":\"510 - 523\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420221102873\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221102873","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

摘要

硬件加速器的最新进展,如张量处理单元(tpu),相对于中央处理单元(cpu),不仅加快了机器学习的计算时间,而且如本文所示,也加快了科学建模和计算机模拟的计算时间。为了研究用于分布式科学计算的TPU硬件,我们求解流体物理模拟的偏微分方程(PDEs)来模拟河流洪水。我们证明tpu比cpu实现了两个数量级的加速。在tpu上运行物理模拟可以通过谷歌云平台公开访问,我们发布了模拟的Python交互式笔记本版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating physics simulations with tensor processing units: An inundation modeling example
Recent advancements in hardware accelerators such as Tensor Processing Units (TPUs) speed up computation time relative to Central Processing Units (CPUs) not only for machine learning but, as demonstrated here, also for scientific modeling and computer simulations. To study TPU hardware for distributed scientific computing, we solve partial differential equations (PDEs) for the physics simulation of fluids to model riverine floods. We demonstrate that TPUs achieve a two orders of magnitude speedup over CPUs. Running physics simulations on TPUs is publicly accessible via the Google Cloud Platform, and we release a Python interactive notebook version of the simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
期刊最新文献
TwoFold: Highly accurate structure and affinity prediction for protein-ligand complexes from sequences GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics General framework for re-assuring numerical reliability in parallel Krylov solvers: A case of bi-conjugate gradient stabilized methods Role-shifting threads: Increasing OpenMP malleability to address load imbalance at MPI and OpenMP Efficient implementation of low-order-precision smoothed particle hydrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1