结合HRV映射数学模型与机器学习预测心源性猝死

Shahrzad Marjani , Mohammad Karimi Moridani
{"title":"结合HRV映射数学模型与机器学习预测心源性猝死","authors":"Shahrzad Marjani ,&nbsp;Mohammad Karimi Moridani","doi":"10.1016/j.cmpbup.2023.100112","DOIUrl":null,"url":null,"abstract":"<div><p>Sudden cardiac death, a prominent cause of mortality, often occurs within a narrow time window of less than an hour. This study introduces a novel methodology with the aim of early prediction of sudden cardiac death. The proposed approach involves the extraction of diverse features from the ECG signal, including the calculation of angles between two vectors, the computation of triangle areas formed by consecutive points, the determination of the shortest distance to a 450 line, and their combinations. Additionally, a thresholding technique is proposed to identify the risk period and predict the occurrence of sudden death. To assess the performance of the algorithm, data from the MIT-BH Holter database were utilized. The results obtained demonstrate that the angle feature achieves an average sensitivity of 93.75% with five false alarms, the area feature achieves an average sensitivity of 88.75% with nine false alarms, the shortest distance feature achieves an average sensitivity of 86.25% with 12 false alarms, and the combined feature achieves an average sensitivity of 96.25% with three false alarms. Remarkably, unlike existing methodologies in the literature, this method exhibits high accuracy in predicting the development of the risk of sudden cardiac death (SCD) even up to 30 min prior to onset. As a consequence, it plays a critical role in diagnosing patients' conditions and facilitating timely interventions. Moreover, the results confirm the feasibility of predicting cardiac arrest solely based on geometric features derived from variations in heart rate variability (HRV) dynamics.</p></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"4 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining mathematical model for HRV mapping and machine learning to predict sudden cardiac death\",\"authors\":\"Shahrzad Marjani ,&nbsp;Mohammad Karimi Moridani\",\"doi\":\"10.1016/j.cmpbup.2023.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sudden cardiac death, a prominent cause of mortality, often occurs within a narrow time window of less than an hour. This study introduces a novel methodology with the aim of early prediction of sudden cardiac death. The proposed approach involves the extraction of diverse features from the ECG signal, including the calculation of angles between two vectors, the computation of triangle areas formed by consecutive points, the determination of the shortest distance to a 450 line, and their combinations. Additionally, a thresholding technique is proposed to identify the risk period and predict the occurrence of sudden death. To assess the performance of the algorithm, data from the MIT-BH Holter database were utilized. The results obtained demonstrate that the angle feature achieves an average sensitivity of 93.75% with five false alarms, the area feature achieves an average sensitivity of 88.75% with nine false alarms, the shortest distance feature achieves an average sensitivity of 86.25% with 12 false alarms, and the combined feature achieves an average sensitivity of 96.25% with three false alarms. Remarkably, unlike existing methodologies in the literature, this method exhibits high accuracy in predicting the development of the risk of sudden cardiac death (SCD) even up to 30 min prior to onset. As a consequence, it plays a critical role in diagnosing patients' conditions and facilitating timely interventions. Moreover, the results confirm the feasibility of predicting cardiac arrest solely based on geometric features derived from variations in heart rate variability (HRV) dynamics.</p></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"4 \",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990023000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990023000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心脏性猝死是死亡的主要原因,通常发生在不到一小时的狭窄时间窗口内。本研究介绍了一种新的方法,目的是早期预测心源性猝死。该方法从心电信号中提取各种特征,包括计算两个向量之间的夹角,计算连续点形成的三角形面积,确定到450线的最短距离及其组合。此外,提出了一种阈值技术来识别风险期并预测猝死的发生。为了评估算法的性能,使用了MIT-BH Holter数据库的数据。结果表明,角度特征在5次误报情况下平均灵敏度为93.75%,面积特征在9次误报情况下平均灵敏度为88.75%,最短距离特征在12次误报情况下平均灵敏度为86.25%,组合特征在3次误报情况下平均灵敏度为96.25%。值得注意的是,与文献中现有的方法不同,该方法在预测心源性猝死(SCD)风险的发展方面表现出很高的准确性,甚至在发病前30分钟。因此,它在诊断患者病情和促进及时干预方面发挥着关键作用。此外,结果证实了仅基于心率变异性(HRV)动力学变化的几何特征预测心脏骤停的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining mathematical model for HRV mapping and machine learning to predict sudden cardiac death

Sudden cardiac death, a prominent cause of mortality, often occurs within a narrow time window of less than an hour. This study introduces a novel methodology with the aim of early prediction of sudden cardiac death. The proposed approach involves the extraction of diverse features from the ECG signal, including the calculation of angles between two vectors, the computation of triangle areas formed by consecutive points, the determination of the shortest distance to a 450 line, and their combinations. Additionally, a thresholding technique is proposed to identify the risk period and predict the occurrence of sudden death. To assess the performance of the algorithm, data from the MIT-BH Holter database were utilized. The results obtained demonstrate that the angle feature achieves an average sensitivity of 93.75% with five false alarms, the area feature achieves an average sensitivity of 88.75% with nine false alarms, the shortest distance feature achieves an average sensitivity of 86.25% with 12 false alarms, and the combined feature achieves an average sensitivity of 96.25% with three false alarms. Remarkably, unlike existing methodologies in the literature, this method exhibits high accuracy in predicting the development of the risk of sudden cardiac death (SCD) even up to 30 min prior to onset. As a consequence, it plays a critical role in diagnosing patients' conditions and facilitating timely interventions. Moreover, the results confirm the feasibility of predicting cardiac arrest solely based on geometric features derived from variations in heart rate variability (HRV) dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Fostering digital health literacy to enhance trust and improve health outcomes Machine learning from real data: A mental health registry case study ResfEANet: ResNet-fused External Attention Network for Tuberculosis Diagnosis using Chest X-ray Images Role-playing recovery in social virtual worlds: Adult use of child avatars as PTSD therapy Comparative evaluation of low-cost 3D scanning devices for ear acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1