PRIME望远镜的光学对准方法

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS Journal of Astronomical Instrumentation Pub Date : 2023-05-11 DOI:10.1142/S2251171723500046
H. Yama, D. Suzuki, S. Miyazaki, A. Rakich, T. Yamawaki, R. Kirikawa, I. Kondo, Y. Hirao, N. Koshimoto, T. Sumi
{"title":"PRIME望远镜的光学对准方法","authors":"H. Yama, D. Suzuki, S. Miyazaki, A. Rakich, T. Yamawaki, R. Kirikawa, I. Kondo, Y. Hirao, N. Koshimoto, T. Sumi","doi":"10.1142/S2251171723500046","DOIUrl":null,"url":null,"abstract":"We describe the optical alignment method for the Prime-focus Infrared Microlensing Experiment (PRIME) telescope which is a prime-focus near-infrared (NIR) telescope with a wide field of view for the microlensing planet survey toward the Galactic center that is the major task for the PRIME project. There are three steps for the optical alignment: preliminary alignment by a laser tracker, fine alignment by intra- and extra-focal (IFEF) image analysis technique, and complementary and fine alignment by the Hartmann test. We demonstrated that the first two steps work well by the test conducted in the laboratory in Japan. The telescope was installed at the Sutherland Observatory of South African Astronomical Observatory in August, 2022. At the final stage of the installation, we demonstrated that the third method works well and the optical system satisfies the operational requirement.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical Alignment Method for the PRIME Telescope\",\"authors\":\"H. Yama, D. Suzuki, S. Miyazaki, A. Rakich, T. Yamawaki, R. Kirikawa, I. Kondo, Y. Hirao, N. Koshimoto, T. Sumi\",\"doi\":\"10.1142/S2251171723500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the optical alignment method for the Prime-focus Infrared Microlensing Experiment (PRIME) telescope which is a prime-focus near-infrared (NIR) telescope with a wide field of view for the microlensing planet survey toward the Galactic center that is the major task for the PRIME project. There are three steps for the optical alignment: preliminary alignment by a laser tracker, fine alignment by intra- and extra-focal (IFEF) image analysis technique, and complementary and fine alignment by the Hartmann test. We demonstrated that the first two steps work well by the test conducted in the laboratory in Japan. The telescope was installed at the Sutherland Observatory of South African Astronomical Observatory in August, 2022. At the final stage of the installation, we demonstrated that the third method works well and the optical system satisfies the operational requirement.\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251171723500046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171723500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了PRIME项目的主要任务——面向银河系中心的微透镜行星巡天,是一种具有宽视场的近红外(NIR)望远镜。光学对准有三个步骤:用激光跟踪仪进行初步对准,用焦内焦外(IFEF)图像分析技术进行精细对准,用哈特曼测试进行互补和精细对准。我们通过在日本实验室进行的测试证明了前两个步骤的效果良好。该望远镜于2022年8月在南非天文台萨瑟兰天文台安装。在安装的最后阶段,我们证明了第三种方法效果良好,光学系统满足操作要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Alignment Method for the PRIME Telescope
We describe the optical alignment method for the Prime-focus Infrared Microlensing Experiment (PRIME) telescope which is a prime-focus near-infrared (NIR) telescope with a wide field of view for the microlensing planet survey toward the Galactic center that is the major task for the PRIME project. There are three steps for the optical alignment: preliminary alignment by a laser tracker, fine alignment by intra- and extra-focal (IFEF) image analysis technique, and complementary and fine alignment by the Hartmann test. We demonstrated that the first two steps work well by the test conducted in the laboratory in Japan. The telescope was installed at the Sutherland Observatory of South African Astronomical Observatory in August, 2022. At the final stage of the installation, we demonstrated that the third method works well and the optical system satisfies the operational requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
期刊最新文献
An Ultra-Wideband Dual Polarization Antenna Array for the Detection and Localization of Bright Fast Radio Transients in the Milky Way A rail-mounted pumping system developed for suborbital rockets Design of an Ultra-Wideband Antenna Feed and Reflector for use in Hydrogen Intensity Mapping Interferometers Low Complexity Radio Frequency Interference Mitigation for Radio Astronomy Using Large Antenna Array The Effects of the Local Environment on a Compact Radio Interferometer I: Cross-coupling in the Tianlai Dish Pathfinder Array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1