{"title":"铁凝胶:从机械生物学角度看一种神奇的材料","authors":"Soumyadeep Basak , P. Gopinath","doi":"10.1016/j.cobme.2023.100449","DOIUrl":null,"url":null,"abstract":"<div><p>Forces generated intrinsically or perceived externally by cells have significant implications in cell development biology. This relatively nascent field, mechanobiology, is currently being investigated widely in almost every dimension of biological sciences. From a biomedical point of view, hydrogels, a hydrated network of polymer molecules, have provided many excellent scaffold platforms. Moreover, applying extrinsic force to the cells using a magnetic field has always been preferred. In such a scenario, ferrogel, which is hydrogel incorporating magnetically active nanomaterials, offers an exciting platform that can provide cells with their required niche and apply a controlled amount of extrinsic force using a magnetic field. From tissue engineering to 3D Bioprinting and developing biosensing platforms, ferrogels are gaining tremendous attention worldwide. Therefore, the current literature will focus on the mechanobiological importance of ferrogels and their potential application in biomedicine.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"26 ","pages":"Article 100449"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ferrogels: A wonder material from mechanobiological perspective\",\"authors\":\"Soumyadeep Basak , P. Gopinath\",\"doi\":\"10.1016/j.cobme.2023.100449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forces generated intrinsically or perceived externally by cells have significant implications in cell development biology. This relatively nascent field, mechanobiology, is currently being investigated widely in almost every dimension of biological sciences. From a biomedical point of view, hydrogels, a hydrated network of polymer molecules, have provided many excellent scaffold platforms. Moreover, applying extrinsic force to the cells using a magnetic field has always been preferred. In such a scenario, ferrogel, which is hydrogel incorporating magnetically active nanomaterials, offers an exciting platform that can provide cells with their required niche and apply a controlled amount of extrinsic force using a magnetic field. From tissue engineering to 3D Bioprinting and developing biosensing platforms, ferrogels are gaining tremendous attention worldwide. Therefore, the current literature will focus on the mechanobiological importance of ferrogels and their potential application in biomedicine.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"26 \",\"pages\":\"Article 100449\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000053\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000053","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Ferrogels: A wonder material from mechanobiological perspective
Forces generated intrinsically or perceived externally by cells have significant implications in cell development biology. This relatively nascent field, mechanobiology, is currently being investigated widely in almost every dimension of biological sciences. From a biomedical point of view, hydrogels, a hydrated network of polymer molecules, have provided many excellent scaffold platforms. Moreover, applying extrinsic force to the cells using a magnetic field has always been preferred. In such a scenario, ferrogel, which is hydrogel incorporating magnetically active nanomaterials, offers an exciting platform that can provide cells with their required niche and apply a controlled amount of extrinsic force using a magnetic field. From tissue engineering to 3D Bioprinting and developing biosensing platforms, ferrogels are gaining tremendous attention worldwide. Therefore, the current literature will focus on the mechanobiological importance of ferrogels and their potential application in biomedicine.