Siqi Jia, Depeng Li, Yixing Chen, Guanding Mei, Jingrui Ma, Xiangwei Qu, Haodong Tang, Pai Liu, Bing Xu, Kai Wang, Zhikuan Zhang, Jun Xia, Xiao Wei Sun
{"title":"全高清量子点发光二极管硅微显示器","authors":"Siqi Jia, Depeng Li, Yixing Chen, Guanding Mei, Jingrui Ma, Xiangwei Qu, Haodong Tang, Pai Liu, Bing Xu, Kai Wang, Zhikuan Zhang, Jun Xia, Xiao Wei Sun","doi":"10.1002/jsid.1253","DOIUrl":null,"url":null,"abstract":"<p>We report a 0.39-in. quantum dot light-emitting diode (QLED) microdisplay with full high-definition (FHD, 1920 × 1080) resolution by integrating a red top-emitting QLED on a complementary metal–oxide–semiconductor (CMOS) backplane. By optimizing the microcavity structure and constructing a suitable energy-level structure for the QLED devices, the performance of the large-area (4.9 × 8.7 mm<sup>2</sup>) top-emitting device with normal structure reached 13,936 cd/m<sup>2</sup> of brightness at 5-V bias with 13.3% external quantum efficiency (EQE). Notably, the optimal device showed a low turn-on voltage of 1.7 V, which matched well the voltage output of the CMOS backplane. Our work demonstrates the great promise of QLED microdisplays for applications in head-mounted augmented reality/virtual reality (AR/VR).</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A full high-definition quantum dot light-emitting diode-on-silicon microdisplay\",\"authors\":\"Siqi Jia, Depeng Li, Yixing Chen, Guanding Mei, Jingrui Ma, Xiangwei Qu, Haodong Tang, Pai Liu, Bing Xu, Kai Wang, Zhikuan Zhang, Jun Xia, Xiao Wei Sun\",\"doi\":\"10.1002/jsid.1253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report a 0.39-in. quantum dot light-emitting diode (QLED) microdisplay with full high-definition (FHD, 1920 × 1080) resolution by integrating a red top-emitting QLED on a complementary metal–oxide–semiconductor (CMOS) backplane. By optimizing the microcavity structure and constructing a suitable energy-level structure for the QLED devices, the performance of the large-area (4.9 × 8.7 mm<sup>2</sup>) top-emitting device with normal structure reached 13,936 cd/m<sup>2</sup> of brightness at 5-V bias with 13.3% external quantum efficiency (EQE). Notably, the optimal device showed a low turn-on voltage of 1.7 V, which matched well the voltage output of the CMOS backplane. Our work demonstrates the great promise of QLED microdisplays for applications in head-mounted augmented reality/virtual reality (AR/VR).</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1253\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A full high-definition quantum dot light-emitting diode-on-silicon microdisplay
We report a 0.39-in. quantum dot light-emitting diode (QLED) microdisplay with full high-definition (FHD, 1920 × 1080) resolution by integrating a red top-emitting QLED on a complementary metal–oxide–semiconductor (CMOS) backplane. By optimizing the microcavity structure and constructing a suitable energy-level structure for the QLED devices, the performance of the large-area (4.9 × 8.7 mm2) top-emitting device with normal structure reached 13,936 cd/m2 of brightness at 5-V bias with 13.3% external quantum efficiency (EQE). Notably, the optimal device showed a low turn-on voltage of 1.7 V, which matched well the voltage output of the CMOS backplane. Our work demonstrates the great promise of QLED microdisplays for applications in head-mounted augmented reality/virtual reality (AR/VR).
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.