{"title":"广泛使用的人工智能医学测试关键临床研究的统计考虑和挑战:跨学科合作的机会","authors":"Arkendra De","doi":"10.1080/19466315.2023.2169752","DOIUrl":null,"url":null,"abstract":"Abstract The application of Artificial Intelligence to medical testing has received much attention in recent years, as evidenced by the flurry of published studies describing Artificial Intelligence software developed to solve problems in medical testing. While this recent activity is exciting, developed Artificial Intelligence medical tests ultimately can only be considered as candidates for widespread use if these tests demonstrate good performance in pivotal clinical studies. What are pivotal clinical studies for Artificial Intelligence medical tests aimed for widespread use? What are some of the major considerations and challenges for assessing performance of these tests in this context? What are some of the outstanding areas where statisticians, in collaboration with professionals outside the statistical community, could help in this endeavor? This article addresses these questions. This article is meant to appeal to a broad audience with varying levels of statistical and medical testing knowledge so that inter-disciplinary collaboration could be enhanced.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"476 - 490"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Considerations and Challenges for Pivotal Clinical Studies of Artificial Intelligence Medical Tests for Widespread Use: Opportunities for Inter-Disciplinary Collaboration\",\"authors\":\"Arkendra De\",\"doi\":\"10.1080/19466315.2023.2169752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The application of Artificial Intelligence to medical testing has received much attention in recent years, as evidenced by the flurry of published studies describing Artificial Intelligence software developed to solve problems in medical testing. While this recent activity is exciting, developed Artificial Intelligence medical tests ultimately can only be considered as candidates for widespread use if these tests demonstrate good performance in pivotal clinical studies. What are pivotal clinical studies for Artificial Intelligence medical tests aimed for widespread use? What are some of the major considerations and challenges for assessing performance of these tests in this context? What are some of the outstanding areas where statisticians, in collaboration with professionals outside the statistical community, could help in this endeavor? This article addresses these questions. This article is meant to appeal to a broad audience with varying levels of statistical and medical testing knowledge so that inter-disciplinary collaboration could be enhanced.\",\"PeriodicalId\":51280,\"journal\":{\"name\":\"Statistics in Biopharmaceutical Research\",\"volume\":\"15 1\",\"pages\":\"476 - 490\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biopharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19466315.2023.2169752\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19466315.2023.2169752","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Statistical Considerations and Challenges for Pivotal Clinical Studies of Artificial Intelligence Medical Tests for Widespread Use: Opportunities for Inter-Disciplinary Collaboration
Abstract The application of Artificial Intelligence to medical testing has received much attention in recent years, as evidenced by the flurry of published studies describing Artificial Intelligence software developed to solve problems in medical testing. While this recent activity is exciting, developed Artificial Intelligence medical tests ultimately can only be considered as candidates for widespread use if these tests demonstrate good performance in pivotal clinical studies. What are pivotal clinical studies for Artificial Intelligence medical tests aimed for widespread use? What are some of the major considerations and challenges for assessing performance of these tests in this context? What are some of the outstanding areas where statisticians, in collaboration with professionals outside the statistical community, could help in this endeavor? This article addresses these questions. This article is meant to appeal to a broad audience with varying levels of statistical and medical testing knowledge so that inter-disciplinary collaboration could be enhanced.
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.