{"title":"静止旋转宇宙模型中自旋粒子运动的特性","authors":"V. G. Krechet, V. B. Oshurko, A. E. Kisser","doi":"10.1134/S0202289323010061","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of particles described by the Dirac equation is considered in a homogeneous stationary rotating cosmological model, which is the closest generalization of Goedel’s cosmological model and admits the existence of unclosed timelike lines. It is shown that, in the space-time of the rotating cosmological model, the intrinsic angular momentum of a spinor particle precesses around the axis of rotation, and the angular velocity of rotation of the cosmological model affects the mass of the spinor particle, while the spin magnetic moment of the particles can generate electromagnetic radiation called “spin light.”</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peculiarities of the Motion of Spinning Particles in a Stationary Rotating Cosmological Model\",\"authors\":\"V. G. Krechet, V. B. Oshurko, A. E. Kisser\",\"doi\":\"10.1134/S0202289323010061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamics of particles described by the Dirac equation is considered in a homogeneous stationary rotating cosmological model, which is the closest generalization of Goedel’s cosmological model and admits the existence of unclosed timelike lines. It is shown that, in the space-time of the rotating cosmological model, the intrinsic angular momentum of a spinor particle precesses around the axis of rotation, and the angular velocity of rotation of the cosmological model affects the mass of the spinor particle, while the spin magnetic moment of the particles can generate electromagnetic radiation called “spin light.”</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289323010061\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289323010061","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Peculiarities of the Motion of Spinning Particles in a Stationary Rotating Cosmological Model
The dynamics of particles described by the Dirac equation is considered in a homogeneous stationary rotating cosmological model, which is the closest generalization of Goedel’s cosmological model and admits the existence of unclosed timelike lines. It is shown that, in the space-time of the rotating cosmological model, the intrinsic angular momentum of a spinor particle precesses around the axis of rotation, and the angular velocity of rotation of the cosmological model affects the mass of the spinor particle, while the spin magnetic moment of the particles can generate electromagnetic radiation called “spin light.”
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community