{"title":"使用智能手机3D扫描仪和桌面3D打印制造烧伤康复定制面罩的数字工作流程:临床案例研究","authors":"Bushra Alhazmi, Feras Alshomer, Abdualziz Alazzam, Amany Shehabeldin, Obaid Almeshal, Deepak M Kalaskar","doi":"10.1186/s41205-022-00140-0","DOIUrl":null,"url":null,"abstract":"<p><p>We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069819/pdf/","citationCount":"1","resultStr":"{\"title\":\"Digital workflow for fabrication of bespoke facemask in burn rehabilitation with smartphone 3D scanner and desktop 3D printing: clinical case study.\",\"authors\":\"Bushra Alhazmi, Feras Alshomer, Abdualziz Alazzam, Amany Shehabeldin, Obaid Almeshal, Deepak M Kalaskar\",\"doi\":\"10.1186/s41205-022-00140-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069819/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-022-00140-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-022-00140-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Digital workflow for fabrication of bespoke facemask in burn rehabilitation with smartphone 3D scanner and desktop 3D printing: clinical case study.
We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.