使用智能手机3D扫描仪和桌面3D打印制造烧伤康复定制面罩的数字工作流程:临床案例研究

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2022-05-04 DOI:10.1186/s41205-022-00140-0
Bushra Alhazmi, Feras Alshomer, Abdualziz Alazzam, Amany Shehabeldin, Obaid Almeshal, Deepak M Kalaskar
{"title":"使用智能手机3D扫描仪和桌面3D打印制造烧伤康复定制面罩的数字工作流程:临床案例研究","authors":"Bushra Alhazmi,&nbsp;Feras Alshomer,&nbsp;Abdualziz Alazzam,&nbsp;Amany Shehabeldin,&nbsp;Obaid Almeshal,&nbsp;Deepak M Kalaskar","doi":"10.1186/s41205-022-00140-0","DOIUrl":null,"url":null,"abstract":"<p><p>We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069819/pdf/","citationCount":"1","resultStr":"{\"title\":\"Digital workflow for fabrication of bespoke facemask in burn rehabilitation with smartphone 3D scanner and desktop 3D printing: clinical case study.\",\"authors\":\"Bushra Alhazmi,&nbsp;Feras Alshomer,&nbsp;Abdualziz Alazzam,&nbsp;Amany Shehabeldin,&nbsp;Obaid Almeshal,&nbsp;Deepak M Kalaskar\",\"doi\":\"10.1186/s41205-022-00140-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069819/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-022-00140-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-022-00140-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个数字工作流程,用于生产用于烧伤疤痕管理的定制面部矫形器,使用智能手机三维(3D)扫描仪和桌面3D打印。获得了一位面部烧伤疤痕的48岁女士的3D面部扫描。使用开源程序进行3D建模来创建口罩,然后使用刚性聚乳酸(PLA)细丝和半刚性热塑性聚氨酯(TPU)进行3D打印。常规口罩被用作对照。每个口罩佩戴7天。主要结果是舒适度和坚持治疗。传统口罩最方便,其次是TPU口罩(平均舒适度得分分别为9/10和8.7/10)。患者对TPU和传统口罩的依从性都很高,每种口罩都戴了至少21个 小时/天,持续7天。恰恰相反,解放军的口罩并没有得到很好的容忍。所提出的数字工作流程简单、对患者友好,可用于资源密集型医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital workflow for fabrication of bespoke facemask in burn rehabilitation with smartphone 3D scanner and desktop 3D printing: clinical case study.

We present a digital workflow for the production of custom facial orthosis used for burn scar management using smartphone three-dimensional (3D) scanner and desktop 3D printing. 3D facial scan of a 48-year-old lady with facial burn scars was obtained. 3D modeling with open-source programs were used to create facemask then 3D printed using rigid polylactic acid (PLA) filament and semi-rigid thermoplastic polyurethane (TPU). Conventional facemask was used as a control. Each mask was worn for 7 days. Primary outcomes were level of comfort, and adherence to treatment. The conventional facemask was the most convenient followed by the TPU-facemask (mean comfort score of 9/10 and 8.7/10, respectively). Patient's compliance was high for both TPU and conventional masks, each was worn for at least 21 hours/day for 7 days. On the contrary, PLA-facemask was not well tolerated. The proposed digital workflow is simple, patient-friendly and can be adopted for resource-intensive healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
An anthropomorphic phantom for atrial transseptal puncture simulation training. Effects of 3D ultrasonography and 3D printed images on maternal-fetal attachment and its correlation with overall smoking within pregnancy: a pilot study. Accuracy of pelvic bone segmentation for 3d printing: a study of segmentation accuracy based on anatomic landmarks to evaluate the influence of the observer. Planning for complex inferior vena cava filter retrievals: the implementation and effectiveness of 3D printed models. Comparative analysis of conventionally and additively manufactured acetabular shells from a single manufacturer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1