{"title":"基于几何和辐射数据集成的摄影测量点云分类","authors":"G. G. Pessoa, Amilton Amorim, M. Galo, M. Galo","doi":"10.1590/S1982-21702019000S00001","DOIUrl":null,"url":null,"abstract":"The extraction of information from point cloud is usually done after the application of classification methods based on the geometric characteristics of the objects. However, the classification of photogrammetric point clouds can be carried out using radiometric information combined with geometric information to minimize possible classification issues. With this in mind, this work proposes an approach to the classification of photogrammetric point cloud, generated by correspondence of aerial images acquired by Remotely Piloted Aircraft System (RPAS). The proposed approach for classifying photogrammetric point clouds consists of a pixel-supervised classification method, based on a decision tree. To achieve this, three data sets were used, one to define which attributes allow discrimination between the classes and the definition of the thresholds. Initially, several attributes were extracted based on a training sample. The average and standard deviation values for the attributes of each class extracted were used to guide the decision tree definition. The defined decision tree was applied to the other two point clouds to validate the approach and for thematic accuracy assessment. The quantitative analyses of the classifications based on kappa coefficient of agreement, applied to both validation areas, reached values higher than 0.938","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1590/S1982-21702019000S00001","citationCount":"4","resultStr":"{\"title\":\"PHOTOGRAMMETRIC POINT CLOUD CLASSIFICATION BASED ON GEOMETRIC AND RADIOMETRIC DATA INTEGRATION\",\"authors\":\"G. G. Pessoa, Amilton Amorim, M. Galo, M. Galo\",\"doi\":\"10.1590/S1982-21702019000S00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of information from point cloud is usually done after the application of classification methods based on the geometric characteristics of the objects. However, the classification of photogrammetric point clouds can be carried out using radiometric information combined with geometric information to minimize possible classification issues. With this in mind, this work proposes an approach to the classification of photogrammetric point cloud, generated by correspondence of aerial images acquired by Remotely Piloted Aircraft System (RPAS). The proposed approach for classifying photogrammetric point clouds consists of a pixel-supervised classification method, based on a decision tree. To achieve this, three data sets were used, one to define which attributes allow discrimination between the classes and the definition of the thresholds. Initially, several attributes were extracted based on a training sample. The average and standard deviation values for the attributes of each class extracted were used to guide the decision tree definition. The defined decision tree was applied to the other two point clouds to validate the approach and for thematic accuracy assessment. The quantitative analyses of the classifications based on kappa coefficient of agreement, applied to both validation areas, reached values higher than 0.938\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1590/S1982-21702019000S00001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S1982-21702019000S00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1982-21702019000S00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
PHOTOGRAMMETRIC POINT CLOUD CLASSIFICATION BASED ON GEOMETRIC AND RADIOMETRIC DATA INTEGRATION
The extraction of information from point cloud is usually done after the application of classification methods based on the geometric characteristics of the objects. However, the classification of photogrammetric point clouds can be carried out using radiometric information combined with geometric information to minimize possible classification issues. With this in mind, this work proposes an approach to the classification of photogrammetric point cloud, generated by correspondence of aerial images acquired by Remotely Piloted Aircraft System (RPAS). The proposed approach for classifying photogrammetric point clouds consists of a pixel-supervised classification method, based on a decision tree. To achieve this, three data sets were used, one to define which attributes allow discrimination between the classes and the definition of the thresholds. Initially, several attributes were extracted based on a training sample. The average and standard deviation values for the attributes of each class extracted were used to guide the decision tree definition. The defined decision tree was applied to the other two point clouds to validate the approach and for thematic accuracy assessment. The quantitative analyses of the classifications based on kappa coefficient of agreement, applied to both validation areas, reached values higher than 0.938
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.