使用熔融层建模的钢和铜的增材制造:材料和工艺发展

Q4 Materials Science Powder Metallurgy Progress Pub Date : 2019-12-01 DOI:10.1515/pmp-2019-0007
J. Ecker, K. Dobrezberger, J. Gonzalez-Gutierrez, M. Spoerk, C. Gierl-Mayer, Herbert Danninger
{"title":"使用熔融层建模的钢和铜的增材制造:材料和工艺发展","authors":"J. Ecker, K. Dobrezberger, J. Gonzalez-Gutierrez, M. Spoerk, C. Gierl-Mayer, Herbert Danninger","doi":"10.1515/pmp-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components. To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized. The focal points of this study are as following: 1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing. 2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step. 3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts. The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.","PeriodicalId":52175,"journal":{"name":"Powder Metallurgy Progress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Additive Manufacturing of Steel and Copper Using Fused Layer Modelling: Material and Process Development\",\"authors\":\"J. Ecker, K. Dobrezberger, J. Gonzalez-Gutierrez, M. Spoerk, C. Gierl-Mayer, Herbert Danninger\",\"doi\":\"10.1515/pmp-2019-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components. To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized. The focal points of this study are as following: 1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing. 2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step. 3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts. The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.\",\"PeriodicalId\":52175,\"journal\":{\"name\":\"Powder Metallurgy Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pmp-2019-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pmp-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 7

摘要

摘要熔融层建模(FLM)是材料挤压(ME)增材制造(AM)的一种方法。FLM通常处理聚合物材料的加工,但也可用于加工金属填充的聚合物系统以生产金属部件。为此目的使用FLM有助于节省成本,因为与直接金属激光加工硬件相比,FLM硬件便宜,并且FLM为金属部件的生产提供了另一种途径。通过FLM生产金属零件,其方法不同于直接金属加工技术,需要几个加工步骤:首先,生产由特殊聚合物-金属成分组成的细丝。然后利用FLM加工技术将长丝加工成成形件。随后,聚合物粘结剂被除去(“脱脂”),最后金属粉末体被烧结。根据所使用的金属粉末,粘合剂组成,FLM生产参数以及脱脂和烧结工艺必须仔细调整和优化。本研究的重点如下:1.研究方法:确认FLM +脱脂和烧结可以作为直接金属增材制造的替代路线来生产金属零件。2. 工艺参数的确定,取决于所使用的金属粉末(钢和铜)和每个工艺步骤的优化。3.比较了不同金属粉末的制备路径及其脱粘、烧结性能和成品的最终性能。结果表明,调整FLM参数后,两种材料均可打印,两种金属粉末体系均可生产金属零件。两种粉末的生产方法和烧结工艺均取得了良好的效果。然而,在烧结过程中有一些特殊的挑战,必须克服这些挑战才能生产出高质量的金属零件。本研究为了解利用FLM加工技术将钢和铜粉末加工成金属零件提供了基础基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Manufacturing of Steel and Copper Using Fused Layer Modelling: Material and Process Development
Abstract Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components. To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized. The focal points of this study are as following: 1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing. 2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step. 3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts. The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy Progress
Powder Metallurgy Progress Materials Science-Metals and Alloys
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Fracture Toughness of Cement Paste Assessed with Micro-Scratch and Acoustic Emission Evaluation of Residual Stress and Tensile Properties of Railway Axle Using Instrumented Indentation Method Announcements: Professor RNDr. Ján Dusza, DrSc – 70 years jubeeleum Effect of Machining on Mechanical Properties of Borosilicate Glasses Micromechanical Properties of Reactive HiTUS TiNbVTaZrHf–N Coatings on Different Substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1