体内胶质细胞到神经元的转换:陷阱和解决方案

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2022-05-10 DOI:10.1002/dneu.22880
Lei-Lei Wang, Chun-Li Zhang
{"title":"体内胶质细胞到神经元的转换:陷阱和解决方案","authors":"Lei-Lei Wang,&nbsp;Chun-Li Zhang","doi":"10.1002/dneu.22880","DOIUrl":null,"url":null,"abstract":"<p>Neuron loss and disruption of neural circuits are associated with many neurological conditions. A key question is how to rebuild neural circuits for functional improvements. In vivo glia-to-neuron (GtN) conversion emerges as a potential solution for regeneration-based therapeutics. This approach takes advantage of the regenerative ability of resident glial cells to produce new neurons through cell fate reprogramming. Significant progress has been made over the years in this emerging field. However, inappropriate analysis often leads to misleading conclusions that create confusion and hype. In this perspective, we point out the most salient pitfalls associated with some recent studies and provide solutions to prevent them in the future. The goal is to foster healthy development of this promising field and lay a solid cellular foundation for future regeneration-based medicine.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"367-374"},"PeriodicalIF":2.7000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"In vivo glia-to-neuron conversion: pitfalls and solutions\",\"authors\":\"Lei-Lei Wang,&nbsp;Chun-Li Zhang\",\"doi\":\"10.1002/dneu.22880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuron loss and disruption of neural circuits are associated with many neurological conditions. A key question is how to rebuild neural circuits for functional improvements. In vivo glia-to-neuron (GtN) conversion emerges as a potential solution for regeneration-based therapeutics. This approach takes advantage of the regenerative ability of resident glial cells to produce new neurons through cell fate reprogramming. Significant progress has been made over the years in this emerging field. However, inappropriate analysis often leads to misleading conclusions that create confusion and hype. In this perspective, we point out the most salient pitfalls associated with some recent studies and provide solutions to prevent them in the future. The goal is to foster healthy development of this promising field and lay a solid cellular foundation for future regeneration-based medicine.</p>\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"82 5\",\"pages\":\"367-374\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22880\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

神经元丧失和神经回路的破坏与许多神经系统疾病有关。一个关键问题是如何重建神经回路以改善功能。体内胶质细胞到神经元(GtN)的转化成为基于再生治疗的潜在解决方案。这种方法利用了驻留神经胶质细胞的再生能力,通过细胞命运重编程产生新的神经元。多年来,这一新兴领域取得了重大进展。然而,不恰当的分析往往会导致误导性的结论,从而造成混乱和炒作。从这个角度来看,我们指出了与一些最近的研究相关的最突出的陷阱,并提供了未来防止它们的解决方案。目标是促进这一有前途的领域的健康发展,为未来的再生医学奠定坚实的细胞基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo glia-to-neuron conversion: pitfalls and solutions

Neuron loss and disruption of neural circuits are associated with many neurological conditions. A key question is how to rebuild neural circuits for functional improvements. In vivo glia-to-neuron (GtN) conversion emerges as a potential solution for regeneration-based therapeutics. This approach takes advantage of the regenerative ability of resident glial cells to produce new neurons through cell fate reprogramming. Significant progress has been made over the years in this emerging field. However, inappropriate analysis often leads to misleading conclusions that create confusion and hype. In this perspective, we point out the most salient pitfalls associated with some recent studies and provide solutions to prevent them in the future. The goal is to foster healthy development of this promising field and lay a solid cellular foundation for future regeneration-based medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Overexpression of Growth Differentiation Factor 15 Reduces Neuronal Cell Damage Induced by Oxygen-Glucose Deprivation/Reoxygenation via Inhibiting Endoplasmic Reticulum Stress-Mediated Ferroptosis. Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins. Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1