{"title":"使用JAGS对计数数据进行贝叶斯分析教程","authors":"Sijing Shao","doi":"10.35566/jbds/v2n2/shao","DOIUrl":null,"url":null,"abstract":"In behavioral studies, the frequency of a particular behavior or event is often collected and the acquired data are referred to as count data. This tutorial introduces readers to Poisson regression models which is a more appropriate approach for such data. Meanwhile, count data with excessive zeros often occur in behavioral studies and models such as zero-inflated or hurdle models can be employed for handling zero-inflation in the count data. In this tutorial, we aim to cover the necessary fundamentals for these methods and equip readers with application tools of JAGS. Examples of the implementation of the models in JAGS from within R are provided for demonstration purposes.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tutorial on Bayesian Analysis of Count Data Using JAGS\",\"authors\":\"Sijing Shao\",\"doi\":\"10.35566/jbds/v2n2/shao\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In behavioral studies, the frequency of a particular behavior or event is often collected and the acquired data are referred to as count data. This tutorial introduces readers to Poisson regression models which is a more appropriate approach for such data. Meanwhile, count data with excessive zeros often occur in behavioral studies and models such as zero-inflated or hurdle models can be employed for handling zero-inflation in the count data. In this tutorial, we aim to cover the necessary fundamentals for these methods and equip readers with application tools of JAGS. Examples of the implementation of the models in JAGS from within R are provided for demonstration purposes.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v2n2/shao\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v2n2/shao","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tutorial on Bayesian Analysis of Count Data Using JAGS
In behavioral studies, the frequency of a particular behavior or event is often collected and the acquired data are referred to as count data. This tutorial introduces readers to Poisson regression models which is a more appropriate approach for such data. Meanwhile, count data with excessive zeros often occur in behavioral studies and models such as zero-inflated or hurdle models can be employed for handling zero-inflation in the count data. In this tutorial, we aim to cover the necessary fundamentals for these methods and equip readers with application tools of JAGS. Examples of the implementation of the models in JAGS from within R are provided for demonstration purposes.