通过对源代码的语义和结构聚类改进智能合约搜索

IF 6.9 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Blockchain-Research and Applications Pub Date : 2023-06-01 DOI:10.1016/j.bcra.2022.100117
Alkhansaa A. Abuhashim , Chiu C. Tan
{"title":"通过对源代码的语义和结构聚类改进智能合约搜索","authors":"Alkhansaa A. Abuhashim ,&nbsp;Chiu C. Tan","doi":"10.1016/j.bcra.2022.100117","DOIUrl":null,"url":null,"abstract":"<div><p>The search for smart contract source codes has drawn research attention to fulfill developers’ and researchers’ needs. Yet, the existing studies are not mature enough to address smart contracts’ technical properties and functionalities. This paper proposes a system to improve the naive search for smart contract codes; for example, Etherscan has one keyword search feature without regard to the contract structure. We consider clustering smart contracts based on developers’ preferences, which increases the probability that the resulting source codes match developers’ needs. Our experimental results show a significant improvement in the complexity of the retrieved source codes of smart contracts compared with the baseline scenario using blockchain search engines (e.g., Etherscan). Our solution reduces the number of retrieved smart contract codes the developer has to check if the codes match her/his needs by 94%, 88%, 82%, or 98%, depending on the user’s search preferences.</p></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"4 2","pages":"Article 100117"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving smart contract search by semantic and structural clustering for source codes\",\"authors\":\"Alkhansaa A. Abuhashim ,&nbsp;Chiu C. Tan\",\"doi\":\"10.1016/j.bcra.2022.100117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The search for smart contract source codes has drawn research attention to fulfill developers’ and researchers’ needs. Yet, the existing studies are not mature enough to address smart contracts’ technical properties and functionalities. This paper proposes a system to improve the naive search for smart contract codes; for example, Etherscan has one keyword search feature without regard to the contract structure. We consider clustering smart contracts based on developers’ preferences, which increases the probability that the resulting source codes match developers’ needs. Our experimental results show a significant improvement in the complexity of the retrieved source codes of smart contracts compared with the baseline scenario using blockchain search engines (e.g., Etherscan). Our solution reduces the number of retrieved smart contract codes the developer has to check if the codes match her/his needs by 94%, 88%, 82%, or 98%, depending on the user’s search preferences.</p></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":\"4 2\",\"pages\":\"Article 100117\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720922000586\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720922000586","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能合约源代码的搜索已经引起了研究人员的关注,以满足开发人员和研究人员的需求。然而,现有的研究还不够成熟,无法解决智能合约的技术属性和功能。本文提出了一种改进智能合约代码天真搜索的系统;例如,Etherscan有一个关键字搜索功能,而不考虑合约结构。我们考虑基于开发人员偏好的智能合约集群,这增加了生成的源代码符合开发人员需求的概率。我们的实验结果表明,与使用区块链搜索引擎(例如,Etherscan)的基线场景相比,检索智能合约源代码的复杂性有了显着提高。我们的解决方案减少了检索智能合约代码的数量,开发人员必须检查代码是否符合他/她的需求,减少了94%、88%、82%或98%,具体取决于用户的搜索偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving smart contract search by semantic and structural clustering for source codes

The search for smart contract source codes has drawn research attention to fulfill developers’ and researchers’ needs. Yet, the existing studies are not mature enough to address smart contracts’ technical properties and functionalities. This paper proposes a system to improve the naive search for smart contract codes; for example, Etherscan has one keyword search feature without regard to the contract structure. We consider clustering smart contracts based on developers’ preferences, which increases the probability that the resulting source codes match developers’ needs. Our experimental results show a significant improvement in the complexity of the retrieved source codes of smart contracts compared with the baseline scenario using blockchain search engines (e.g., Etherscan). Our solution reduces the number of retrieved smart contract codes the developer has to check if the codes match her/his needs by 94%, 88%, 82%, or 98%, depending on the user’s search preferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.60%
发文量
0
期刊介绍: Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.
期刊最新文献
Partial pre-image attack on Proof-of-Work based blockchains Dual-blockchain based multi-layer grouping federated learning scheme for heterogeneous data in industrial IoT How can the holder trust the verifier? A CP-ABPRE-based solution to control the access to claims in a Self-Sovereign-Identity scenario Privacy-preserving pathological data sharing among multiple remote parties Prism blockchain enabled Internet of Things with deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1