Tobit回归模型的序贯收缩估计方法

H. Lu, Cuiling Dong, Juling Zhou
{"title":"Tobit回归模型的序贯收缩估计方法","authors":"H. Lu, Cuiling Dong, Juling Zhou","doi":"10.4236/ojmsi.2021.93018","DOIUrl":null,"url":null,"abstract":"In the applications of Tobit regression models we always encounter the \ndata sets which contain too many variables that only a few of them contribute \nto the model. Therefore, it will waste much more samples to estimate the “non-effective” \nvariables in the inference. In this paper, we use a sequential procedure for \nconstructing the fixed size confidence set for the “effective” parameters to \nthe model by using an adaptive shrinkage estimate such that the “effective” \ncoefficients can be efficiently identified with the minimum sample size based \non Tobit regression model. Fixed design is considered for numerical simulation.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sequential Shrinkage Estimating Method for Tobit Regression Model\",\"authors\":\"H. Lu, Cuiling Dong, Juling Zhou\",\"doi\":\"10.4236/ojmsi.2021.93018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the applications of Tobit regression models we always encounter the \\ndata sets which contain too many variables that only a few of them contribute \\nto the model. Therefore, it will waste much more samples to estimate the “non-effective” \\nvariables in the inference. In this paper, we use a sequential procedure for \\nconstructing the fixed size confidence set for the “effective” parameters to \\nthe model by using an adaptive shrinkage estimate such that the “effective” \\ncoefficients can be efficiently identified with the minimum sample size based \\non Tobit regression model. Fixed design is considered for numerical simulation.\",\"PeriodicalId\":56990,\"journal\":{\"name\":\"建模与仿真(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"建模与仿真(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ojmsi.2021.93018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ojmsi.2021.93018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Tobit回归模型的应用中,我们经常遇到包含太多变量的数据集,其中只有少数变量对模型有贡献。因此,它会浪费更多的样本来估计推理中的“无效”变量。在本文中,我们使用一个顺序过程,通过自适应收缩估计来构造模型的“有效”参数的固定大小的置信集,使得“有效”系数可以有效地识别出基于Tobit回归模型的最小样本量。数值模拟采用固定设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sequential Shrinkage Estimating Method for Tobit Regression Model
In the applications of Tobit regression models we always encounter the data sets which contain too many variables that only a few of them contribute to the model. Therefore, it will waste much more samples to estimate the “non-effective” variables in the inference. In this paper, we use a sequential procedure for constructing the fixed size confidence set for the “effective” parameters to the model by using an adaptive shrinkage estimate such that the “effective” coefficients can be efficiently identified with the minimum sample size based on Tobit regression model. Fixed design is considered for numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
期刊最新文献
Comparative Evaluation of the Performance of SWAT, SWAT+, and APEX Models in Simulating Edge of Field Hydrological Processes Making Sense of Anything thru Analytics: Employees Provident Fund (EPF) Simulation of Crack Pattern Formation Due to Shrinkage in a Drying Material Modelling COVID-19 Cumulative Number of Cases in Kenya Using a Negative Binomial INAR (1) Model Understanding the Dynamics Location of Very Large Populations Interacted with Service Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1