电介质和MDM等离子体波导之间的气隙模尺寸匹配器的理论研究

IF 1.8 4区 物理与天体物理 Q3 OPTICS International Journal of Optics Pub Date : 2021-12-14 DOI:10.1155/2021/1025374
R. Wahsheh
{"title":"电介质和MDM等离子体波导之间的气隙模尺寸匹配器的理论研究","authors":"R. Wahsheh","doi":"10.1155/2021/1025374","DOIUrl":null,"url":null,"abstract":"Hybrid integration of dielectric and plasmonic waveguides is necessary to reduce the propagation losses due to the metallic interactions and support of nanofabrication of plasmonic devices that deal with large data transfer. In this paper, we propose a direct yet efficient, very short air-slot coupler (ASC) of a length of 36 nm to increase the coupling efficiency between a silicon waveguide and a silver-air-silver plasmonic waveguide. Our numerical simulation results show that having the ASC at the interface makes the fabrication process much easier and ensures that light couples from a dielectric waveguide into and out of a plasmonic waveguide. The proposed coupler works over a broad frequency range achieving a coupling efficiency of 86% from a dielectric waveguide into a metal-dielectric-metal (MDM) plasmonic waveguide and 68% from a dielectric waveguide to an MDM plasmonic waveguide and back into another dielectric waveguide. In addition, we show that even if there are no high-precision fabrication techniques, light couples from a conventional dielectric waveguide (CDW) into an MDM plasmonic waveguide as long as there is an overlap between the CDW and ASC, which reduces the fabrication process tremendously. Our proposed coupler has an impact on the miniaturization of ultracompact nanoplasmonic devices.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Theoretical Investigation of an Air-Slot Mode-Size Matcher between Dielectric and MDM Plasmonic Waveguides\",\"authors\":\"R. Wahsheh\",\"doi\":\"10.1155/2021/1025374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid integration of dielectric and plasmonic waveguides is necessary to reduce the propagation losses due to the metallic interactions and support of nanofabrication of plasmonic devices that deal with large data transfer. In this paper, we propose a direct yet efficient, very short air-slot coupler (ASC) of a length of 36 nm to increase the coupling efficiency between a silicon waveguide and a silver-air-silver plasmonic waveguide. Our numerical simulation results show that having the ASC at the interface makes the fabrication process much easier and ensures that light couples from a dielectric waveguide into and out of a plasmonic waveguide. The proposed coupler works over a broad frequency range achieving a coupling efficiency of 86% from a dielectric waveguide into a metal-dielectric-metal (MDM) plasmonic waveguide and 68% from a dielectric waveguide to an MDM plasmonic waveguide and back into another dielectric waveguide. In addition, we show that even if there are no high-precision fabrication techniques, light couples from a conventional dielectric waveguide (CDW) into an MDM plasmonic waveguide as long as there is an overlap between the CDW and ASC, which reduces the fabrication process tremendously. Our proposed coupler has an impact on the miniaturization of ultracompact nanoplasmonic devices.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/1025374\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/1025374","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4

摘要

介质和等离子波导的混合集成是必要的,以减少由于金属相互作用和支持处理大数据传输的等离子器件的纳米制造而造成的传播损失。为了提高硅波导与银-空气-银等离子体波导之间的耦合效率,本文提出了一种直接而高效、长度为36 nm的极短空气槽耦合器(ASC)。我们的数值模拟结果表明,在界面处有ASC使制造过程更容易,并确保从介电波导进入和离开等离子波导的光耦合。所提出的耦合器在很宽的频率范围内工作,从介质波导到金属-介电-金属(MDM)等离子体波导的耦合效率为86%,从介质波导到MDM等离子体波导再到另一个介质波导的耦合效率为68%。此外,我们表明,即使没有高精度的制造技术,只要CDW和ASC之间有重叠,光从传统的介质波导(CDW)耦合到MDM等离子体波导,这极大地减少了制造过程。我们提出的耦合器对超紧凑纳米等离子体器件的小型化具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Investigation of an Air-Slot Mode-Size Matcher between Dielectric and MDM Plasmonic Waveguides
Hybrid integration of dielectric and plasmonic waveguides is necessary to reduce the propagation losses due to the metallic interactions and support of nanofabrication of plasmonic devices that deal with large data transfer. In this paper, we propose a direct yet efficient, very short air-slot coupler (ASC) of a length of 36 nm to increase the coupling efficiency between a silicon waveguide and a silver-air-silver plasmonic waveguide. Our numerical simulation results show that having the ASC at the interface makes the fabrication process much easier and ensures that light couples from a dielectric waveguide into and out of a plasmonic waveguide. The proposed coupler works over a broad frequency range achieving a coupling efficiency of 86% from a dielectric waveguide into a metal-dielectric-metal (MDM) plasmonic waveguide and 68% from a dielectric waveguide to an MDM plasmonic waveguide and back into another dielectric waveguide. In addition, we show that even if there are no high-precision fabrication techniques, light couples from a conventional dielectric waveguide (CDW) into an MDM plasmonic waveguide as long as there is an overlap between the CDW and ASC, which reduces the fabrication process tremendously. Our proposed coupler has an impact on the miniaturization of ultracompact nanoplasmonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Dual Optical Injection in Semiconductor Lasers with Zero Henry Factor Study on the Terahertz Spectroscopy Properties of Graphene Quantum Dots Based on Microfluidic Chip Advancements in Synthesis Strategies and Optoelectronic Applications of Bio-Based Photosensitive Polyimides Temperature-Dependent Electromagnetic Surface Wave Supported by Graphene-Loaded Indium Antimonide Planar Structure The Propagation Properties of a Lorentz–Gauss Vortex Beam in a Gradient-Index Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1