基于优化推理智能系统的土体抗剪强度参数估计

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2021-03-24 DOI:10.15625/0866-7187/15926
B. Pham, M. Amiri, M. D. Nguyen, T. Q. Ngo, Kien Nguyen, Hieu Trung Tran, Hoanng Vu, Bui Thi Quynh Anh, H. V. Le, Indra Prakash
{"title":"基于优化推理智能系统的土体抗剪强度参数估计","authors":"B. Pham, M. Amiri, M. D. Nguyen, T. Q. Ngo, Kien Nguyen, Hieu Trung Tran, Hoanng Vu, Bui Thi Quynh Anh, H. V. Le, Indra Prakash","doi":"10.15625/0866-7187/15926","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning techniques have been developed and used to build intelligent information systems for solving problems in various fields. In this study, we have used Optimized Inference Intelligence System namely ANFIS-PSO which is a combination of Adaptive Neural-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for the estimation of shear strength parameters of the soils (Cohesion “C” and angle of internal friction “φ”). These parameters are required for designing the foundation of civil engineering structures. Normally, shear parameters of soil are determined either in the field or in the laboratory which require time, expertise and equipments. Therefore, in this study, we have applied a hybrid model ANFIS-PSO for quick and cost-effective estimation of shear parameters of soil based on the other six physical parameters namely clay content, natural water content, specific gravity, void ratio, liquid limit and plastic limit. In the model study, we have used data of 1252 soft soil samples collected from the different highway project sites of Vietnam. The data was randomly divided into 70:30 ratios for the model training and testing, respectively. Standard statistical measures: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (R) were used for the performance evaluation of the model. Results of the model study indicated that performance of the ANFIS-PSO model is very good in predicting shear parameters of the soil: cohesion (RMSE = 0.075, MAE = 0.041, and R = 0.831) and angle of internal friction (RMSE = 0.08, MAE = 0.058, and R = 0.952).","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimation of shear strength parameters of soil using Optimized Inference Intelligence System\",\"authors\":\"B. Pham, M. Amiri, M. D. Nguyen, T. Q. Ngo, Kien Nguyen, Hieu Trung Tran, Hoanng Vu, Bui Thi Quynh Anh, H. V. Le, Indra Prakash\",\"doi\":\"10.15625/0866-7187/15926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, machine learning techniques have been developed and used to build intelligent information systems for solving problems in various fields. In this study, we have used Optimized Inference Intelligence System namely ANFIS-PSO which is a combination of Adaptive Neural-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for the estimation of shear strength parameters of the soils (Cohesion “C” and angle of internal friction “φ”). These parameters are required for designing the foundation of civil engineering structures. Normally, shear parameters of soil are determined either in the field or in the laboratory which require time, expertise and equipments. Therefore, in this study, we have applied a hybrid model ANFIS-PSO for quick and cost-effective estimation of shear parameters of soil based on the other six physical parameters namely clay content, natural water content, specific gravity, void ratio, liquid limit and plastic limit. In the model study, we have used data of 1252 soft soil samples collected from the different highway project sites of Vietnam. The data was randomly divided into 70:30 ratios for the model training and testing, respectively. Standard statistical measures: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (R) were used for the performance evaluation of the model. Results of the model study indicated that performance of the ANFIS-PSO model is very good in predicting shear parameters of the soil: cohesion (RMSE = 0.075, MAE = 0.041, and R = 0.831) and angle of internal friction (RMSE = 0.08, MAE = 0.058, and R = 0.952).\",\"PeriodicalId\":23639,\"journal\":{\"name\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0866-7187/15926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7187/15926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

近年来,机器学习技术已被开发并用于构建智能信息系统,以解决各个领域的问题。在本研究中,我们使用了优化推理智能系统,即ANFIS-PSO,它是自适应神经模糊推理系统(ANFIS)和粒子群优化(PSO)的结合,用于估计土壤的抗剪强度参数(粘聚力“C”和内摩擦角“φ”)。这些参数是土木工程结构基础设计所必需的。通常,土壤的剪切参数是在现场或实验室确定的,这需要时间、专业知识和设备。因此,在本研究中,我们应用混合模型ANFIS-PSO,基于其他六个物理参数,即粘土含量、天然含水量、比重、孔隙比、液限和塑性极限,快速而经济地估计土壤的剪切参数。在模型研究中,我们使用了从越南不同公路项目现场收集的1252个软土样本的数据。数据被随机分为70:30的比例,分别用于模型训练和测试。标准统计指标:均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R)用于模型的性能评估。模型研究结果表明,ANFIS-PSO模型在预测土壤剪切参数:粘聚力(RMSE=0.075,MAE=0.041,R=0.831)和内摩擦角(RMSE=0.08,MAE=0.058,R=0.952)方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of shear strength parameters of soil using Optimized Inference Intelligence System
In recent years, machine learning techniques have been developed and used to build intelligent information systems for solving problems in various fields. In this study, we have used Optimized Inference Intelligence System namely ANFIS-PSO which is a combination of Adaptive Neural-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for the estimation of shear strength parameters of the soils (Cohesion “C” and angle of internal friction “φ”). These parameters are required for designing the foundation of civil engineering structures. Normally, shear parameters of soil are determined either in the field or in the laboratory which require time, expertise and equipments. Therefore, in this study, we have applied a hybrid model ANFIS-PSO for quick and cost-effective estimation of shear parameters of soil based on the other six physical parameters namely clay content, natural water content, specific gravity, void ratio, liquid limit and plastic limit. In the model study, we have used data of 1252 soft soil samples collected from the different highway project sites of Vietnam. The data was randomly divided into 70:30 ratios for the model training and testing, respectively. Standard statistical measures: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (R) were used for the performance evaluation of the model. Results of the model study indicated that performance of the ANFIS-PSO model is very good in predicting shear parameters of the soil: cohesion (RMSE = 0.075, MAE = 0.041, and R = 0.831) and angle of internal friction (RMSE = 0.08, MAE = 0.058, and R = 0.952).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Effects of drought on enzyme activities and hotspot distribution along plant roots Geotechnical properties of natural sand-mixed granulated blast furnace slag applied to the sand compaction pile method Faecal contamination and its relationship with some environmental variables of four urban rivers in inner Hanoi city, Vietnam Prediction of hotspots pattern in Kalimantan using copula-based quantile regression and probabilistic model: a study of precipitation and dry spells across varied ENSO conditions Radiological risk assessment and characteristics of 210Po in selected water sources in Quang Nam and Da Nang, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1