基于高光谱成像技术的富硒小米无损快速鉴定

IF 1.2 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Czech Journal of Food Sciences Pub Date : 2022-12-19 DOI:10.17221/129/2022-cjfs
Fu Zhang, Xiahua Cui, Chao Zhang, Weihua Cao, Xin-Yu Wang, Sanling Fu, S. Teng
{"title":"基于高光谱成像技术的富硒小米无损快速鉴定","authors":"Fu Zhang, Xiahua Cui, Chao Zhang, Weihua Cao, Xin-Yu Wang, Sanling Fu, S. Teng","doi":"10.17221/129/2022-cjfs","DOIUrl":null,"url":null,"abstract":"To meet rapid and non-destructive identification of selenium-enriched agricultural products selenium-enriched millet and ordinary millet were taken as objects. Image regions of interest (ROI) were selected to extract the spectral average value based on hyperspectral imaging technology. Reducing noise by the Savitzky-Golay (SG) smoothing algorithm, variables were used as inputs that were screened by successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), CARS-SPA, UVE-SPA, and UVE-CARS, while sample variables were used as outputs to build support vector machine (SVM) models. The results showed that the accuracy of CARS-SPA-SVM was 100% in the training set and 99.58% in the test set equivalent to that of CARS-SVM and UVE-CARS-SVM, which was higher than that of SPA-SVM, UVE-SPA-SVM, and UVE-SVM. Therefore, the method of CARS-SPA had superiority, and CARS-SPA-SVM was suitable to identify selenium-enriched millet. Finally, 454.57 nm, 484.98 nm, 885.34 nm, and 937.1 nm, which were obtained by wavelength extraction algorithms, were considered as the sensitive wavelengths of selenium information. This study provided a reference for the identification of selenium-enriched agricultural products.","PeriodicalId":10882,"journal":{"name":"Czech Journal of Food Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid non-destructive identification of selenium-enriched millet based on hyperspectral imaging technology\",\"authors\":\"Fu Zhang, Xiahua Cui, Chao Zhang, Weihua Cao, Xin-Yu Wang, Sanling Fu, S. Teng\",\"doi\":\"10.17221/129/2022-cjfs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet rapid and non-destructive identification of selenium-enriched agricultural products selenium-enriched millet and ordinary millet were taken as objects. Image regions of interest (ROI) were selected to extract the spectral average value based on hyperspectral imaging technology. Reducing noise by the Savitzky-Golay (SG) smoothing algorithm, variables were used as inputs that were screened by successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), CARS-SPA, UVE-SPA, and UVE-CARS, while sample variables were used as outputs to build support vector machine (SVM) models. The results showed that the accuracy of CARS-SPA-SVM was 100% in the training set and 99.58% in the test set equivalent to that of CARS-SVM and UVE-CARS-SVM, which was higher than that of SPA-SVM, UVE-SPA-SVM, and UVE-SVM. Therefore, the method of CARS-SPA had superiority, and CARS-SPA-SVM was suitable to identify selenium-enriched millet. Finally, 454.57 nm, 484.98 nm, 885.34 nm, and 937.1 nm, which were obtained by wavelength extraction algorithms, were considered as the sensitive wavelengths of selenium information. This study provided a reference for the identification of selenium-enriched agricultural products.\",\"PeriodicalId\":10882,\"journal\":{\"name\":\"Czech Journal of Food Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Journal of Food Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/129/2022-cjfs\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Food Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/129/2022-cjfs","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为满足富硒农产品的快速无损鉴定,以富硒小米和普通小米为对象。基于高光谱成像技术,选择感兴趣图像区域提取光谱平均值。通过Savitzky Golay(SG)平滑算法降低噪声,使用变量作为输入,通过连续投影算法(SPA)、竞争自适应重加权采样(CARS)、无信息变量消除(UVE)、CARS-SPA、UVE-SPA和UVE-CARS进行筛选,同时使用样本变量作为输出来构建支持向量机(SVM)模型。结果表明,CARS-SPA-SVM在训练集中的准确率为100%,在测试集中的准确度为99.58%,与CARS-SVM和UVE-CARS-SVM相当,高于SPA-SVM、UVE-SPA-SVM和UVE-SVM。因此,CARS-SPA方法具有优越性,CARS-SPA-SVM适合于富硒小米的鉴定。最后,通过波长提取算法获得的454.57nm、484.98nm、885.34nm和937.1nm被认为是硒信息的敏感波长。本研究为富硒农产品的鉴定提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid non-destructive identification of selenium-enriched millet based on hyperspectral imaging technology
To meet rapid and non-destructive identification of selenium-enriched agricultural products selenium-enriched millet and ordinary millet were taken as objects. Image regions of interest (ROI) were selected to extract the spectral average value based on hyperspectral imaging technology. Reducing noise by the Savitzky-Golay (SG) smoothing algorithm, variables were used as inputs that were screened by successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), CARS-SPA, UVE-SPA, and UVE-CARS, while sample variables were used as outputs to build support vector machine (SVM) models. The results showed that the accuracy of CARS-SPA-SVM was 100% in the training set and 99.58% in the test set equivalent to that of CARS-SVM and UVE-CARS-SVM, which was higher than that of SPA-SVM, UVE-SPA-SVM, and UVE-SVM. Therefore, the method of CARS-SPA had superiority, and CARS-SPA-SVM was suitable to identify selenium-enriched millet. Finally, 454.57 nm, 484.98 nm, 885.34 nm, and 937.1 nm, which were obtained by wavelength extraction algorithms, were considered as the sensitive wavelengths of selenium information. This study provided a reference for the identification of selenium-enriched agricultural products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Czech Journal of Food Sciences
Czech Journal of Food Sciences Food Science & Technology, Chemistry-食品科技
CiteScore
2.60
自引率
0.00%
发文量
48
审稿时长
7 months
期刊介绍: Original research, critical review articles, and short communications dealing with food technology and processing (including food biochemistry, mikrobiology, analyse, engineering, nutrition and economy). Papers are published in English.
期刊最新文献
Nutritional habits comparison of the baby boomer, X, Y, and Z generations located at a private college in Muğla, Türkiye Determination of some heavy metals in different wheat flour brands in Sulaimani, Kurdistan Region - Iraq Nutritional composition analysis and quality evaluation of cattle in different regions of Guizhou Province (China) Characteristics of cases with foodborne diarrheagenic Escherichia coli infection in Huzhou, China Microalgae in lab-grown meat production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1