R. Senthil, Arvind Chezian, Zackir Hussain Ajmal Arsath
{"title":"利用改进表面轮廓增强聚光太阳能吸收器的传热","authors":"R. Senthil, Arvind Chezian, Zackir Hussain Ajmal Arsath","doi":"10.46604/IJETI.2020.5676","DOIUrl":null,"url":null,"abstract":"This work aims to compare the cavity surface contour’s thermal performance to that of the solar absorber’s plain surface contour for Scheffler type parabolic dish collectors. The absorber is tested for the temperature range up to 600°C without working fluid and 180°C with the working fluid. The modified absorber surface's thermal performance is compared with the flat surface absorber with and without heat transfer fluid. The peak temperature reached by the surface modified absorber (534°C) is about 8.6% more than that of the unmodified absorber (492°C) during an outdoor test without fluid. The energy efficiency of cavity surface absorber and plain surface absorber are 67.65% and 61.84%, respectively. The contoured cavity surface produces a more uniform temperature distribution and a higher heat absorption rate than the plain surface. The results are beneficial to the design of high-temperature solar absorbers for concentrated solar collectors.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat Transfer Augmentation of Concentrated Solar Absorber Using Modified Surface Contour\",\"authors\":\"R. Senthil, Arvind Chezian, Zackir Hussain Ajmal Arsath\",\"doi\":\"10.46604/IJETI.2020.5676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to compare the cavity surface contour’s thermal performance to that of the solar absorber’s plain surface contour for Scheffler type parabolic dish collectors. The absorber is tested for the temperature range up to 600°C without working fluid and 180°C with the working fluid. The modified absorber surface's thermal performance is compared with the flat surface absorber with and without heat transfer fluid. The peak temperature reached by the surface modified absorber (534°C) is about 8.6% more than that of the unmodified absorber (492°C) during an outdoor test without fluid. The energy efficiency of cavity surface absorber and plain surface absorber are 67.65% and 61.84%, respectively. The contoured cavity surface produces a more uniform temperature distribution and a higher heat absorption rate than the plain surface. The results are beneficial to the design of high-temperature solar absorbers for concentrated solar collectors.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/IJETI.2020.5676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2020.5676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat Transfer Augmentation of Concentrated Solar Absorber Using Modified Surface Contour
This work aims to compare the cavity surface contour’s thermal performance to that of the solar absorber’s plain surface contour for Scheffler type parabolic dish collectors. The absorber is tested for the temperature range up to 600°C without working fluid and 180°C with the working fluid. The modified absorber surface's thermal performance is compared with the flat surface absorber with and without heat transfer fluid. The peak temperature reached by the surface modified absorber (534°C) is about 8.6% more than that of the unmodified absorber (492°C) during an outdoor test without fluid. The energy efficiency of cavity surface absorber and plain surface absorber are 67.65% and 61.84%, respectively. The contoured cavity surface produces a more uniform temperature distribution and a higher heat absorption rate than the plain surface. The results are beneficial to the design of high-temperature solar absorbers for concentrated solar collectors.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.