{"title":"4wd液压重型野外机器人路径规划与平滑","authors":"P. Mäenpää, J. Mattila","doi":"10.13052/ijfp1439-9776.2413","DOIUrl":null,"url":null,"abstract":"This paper discusses the path planning and path-following control for a four wheel drive (4WD), steer-articulated boom lift driven by hydraulic actuators. The environment is assumed to be both static and known. The path planning will be done in two phases, where the first one finds a crude, collision-free path accounting for the vehicle dimensions, and this path will be smoothed with a path smoothing algorithm to satisfy the kinematic and dynamic constraints imposed by the vehicle and its actuators. The path smoothing algorithm will be chosen from several candidates by using a simulated test scenario. Then, the simulation results will be used to verify the path planners feasibility in heavy-duty, four-wheel-steered field robots having hydraulic actuators and high inertia.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning and Smoothing for 4WDs Hydraulic Heavy-Duty Field Robots\",\"authors\":\"P. Mäenpää, J. Mattila\",\"doi\":\"10.13052/ijfp1439-9776.2413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the path planning and path-following control for a four wheel drive (4WD), steer-articulated boom lift driven by hydraulic actuators. The environment is assumed to be both static and known. The path planning will be done in two phases, where the first one finds a crude, collision-free path accounting for the vehicle dimensions, and this path will be smoothed with a path smoothing algorithm to satisfy the kinematic and dynamic constraints imposed by the vehicle and its actuators. The path smoothing algorithm will be chosen from several candidates by using a simulated test scenario. Then, the simulation results will be used to verify the path planners feasibility in heavy-duty, four-wheel-steered field robots having hydraulic actuators and high inertia.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Path Planning and Smoothing for 4WDs Hydraulic Heavy-Duty Field Robots
This paper discusses the path planning and path-following control for a four wheel drive (4WD), steer-articulated boom lift driven by hydraulic actuators. The environment is assumed to be both static and known. The path planning will be done in two phases, where the first one finds a crude, collision-free path accounting for the vehicle dimensions, and this path will be smoothed with a path smoothing algorithm to satisfy the kinematic and dynamic constraints imposed by the vehicle and its actuators. The path smoothing algorithm will be chosen from several candidates by using a simulated test scenario. Then, the simulation results will be used to verify the path planners feasibility in heavy-duty, four-wheel-steered field robots having hydraulic actuators and high inertia.