{"title":"合成金刚石和石墨烯填充聚醚醚酮复合材料的摩擦磨损特性","authors":"Vishal Kumar, Rajkumar Kaliyamoorthy","doi":"10.1177/09540083221137647","DOIUrl":null,"url":null,"abstract":"Modifying tribo films using filler particles is a significant area of research in developing polymer-based tribo components to minimize material loss during the sliding process. This study focused on altering the wear characteristics of a polyetheretherketone (PEEK)/graphene high-performance polymer composite to strengthen the tribo film by adding synthetic diamond particles. The hot-pressed PEEK composite reinforced by graphene and diamond particles increased the hardness and thermal stability of the composite. Compared with pure PEEK, composites containing 1% graphene and 1% diamond particles showed an increment of 25% and 23% in hardness and thermal stability, respectively. Fourier-transform infrared spectroscopy and X-ray diffraction analysis verified the compatibility and intactness of the fillers in the PEEK matrix. The tribo properties of PEEK composites were characterized by a pin-on-disc tribometer on a counter steel surface. A PEEK composite containing 0.75 wt% graphene and 0.5 wt% diamond particles exhibited the lowest friction of 0.17 at a pressure of 1.5 MPa. The specific wear rate was low (1.78 × 10−6 mm3/Nm) for the composite containing 1 wt% graphene and 1 wt% diamond particles at a pressure of 1.5 MPa. Varying synthetic diamond and graphene filler concentrations in the PEEK matrix change the wear process by modifying the tribo film characteristics, revealing the lowest friction and wear rate. X-ray photoelectron and Raman spectroscopy show that the polymer film was transferred to the steel countersurface, and the tribo-chemical products of the tribo film contribute to a stable tribo film. The ferric oxide film and the tribo film improve the composite’s self-lubricating properties and load-bearing ability. Hence, the composite containing 0.75% of graphene and 0.5% of a synthetic diamond can be employed in the sliding bearing application of continuous conveyors used in mass production systems.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Friction and wear characteristics of synthetic diamond and graphene-filled polyether ether ketone composites\",\"authors\":\"Vishal Kumar, Rajkumar Kaliyamoorthy\",\"doi\":\"10.1177/09540083221137647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modifying tribo films using filler particles is a significant area of research in developing polymer-based tribo components to minimize material loss during the sliding process. This study focused on altering the wear characteristics of a polyetheretherketone (PEEK)/graphene high-performance polymer composite to strengthen the tribo film by adding synthetic diamond particles. The hot-pressed PEEK composite reinforced by graphene and diamond particles increased the hardness and thermal stability of the composite. Compared with pure PEEK, composites containing 1% graphene and 1% diamond particles showed an increment of 25% and 23% in hardness and thermal stability, respectively. Fourier-transform infrared spectroscopy and X-ray diffraction analysis verified the compatibility and intactness of the fillers in the PEEK matrix. The tribo properties of PEEK composites were characterized by a pin-on-disc tribometer on a counter steel surface. A PEEK composite containing 0.75 wt% graphene and 0.5 wt% diamond particles exhibited the lowest friction of 0.17 at a pressure of 1.5 MPa. The specific wear rate was low (1.78 × 10−6 mm3/Nm) for the composite containing 1 wt% graphene and 1 wt% diamond particles at a pressure of 1.5 MPa. Varying synthetic diamond and graphene filler concentrations in the PEEK matrix change the wear process by modifying the tribo film characteristics, revealing the lowest friction and wear rate. X-ray photoelectron and Raman spectroscopy show that the polymer film was transferred to the steel countersurface, and the tribo-chemical products of the tribo film contribute to a stable tribo film. The ferric oxide film and the tribo film improve the composite’s self-lubricating properties and load-bearing ability. Hence, the composite containing 0.75% of graphene and 0.5% of a synthetic diamond can be employed in the sliding bearing application of continuous conveyors used in mass production systems.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083221137647\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083221137647","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Friction and wear characteristics of synthetic diamond and graphene-filled polyether ether ketone composites
Modifying tribo films using filler particles is a significant area of research in developing polymer-based tribo components to minimize material loss during the sliding process. This study focused on altering the wear characteristics of a polyetheretherketone (PEEK)/graphene high-performance polymer composite to strengthen the tribo film by adding synthetic diamond particles. The hot-pressed PEEK composite reinforced by graphene and diamond particles increased the hardness and thermal stability of the composite. Compared with pure PEEK, composites containing 1% graphene and 1% diamond particles showed an increment of 25% and 23% in hardness and thermal stability, respectively. Fourier-transform infrared spectroscopy and X-ray diffraction analysis verified the compatibility and intactness of the fillers in the PEEK matrix. The tribo properties of PEEK composites were characterized by a pin-on-disc tribometer on a counter steel surface. A PEEK composite containing 0.75 wt% graphene and 0.5 wt% diamond particles exhibited the lowest friction of 0.17 at a pressure of 1.5 MPa. The specific wear rate was low (1.78 × 10−6 mm3/Nm) for the composite containing 1 wt% graphene and 1 wt% diamond particles at a pressure of 1.5 MPa. Varying synthetic diamond and graphene filler concentrations in the PEEK matrix change the wear process by modifying the tribo film characteristics, revealing the lowest friction and wear rate. X-ray photoelectron and Raman spectroscopy show that the polymer film was transferred to the steel countersurface, and the tribo-chemical products of the tribo film contribute to a stable tribo film. The ferric oxide film and the tribo film improve the composite’s self-lubricating properties and load-bearing ability. Hence, the composite containing 0.75% of graphene and 0.5% of a synthetic diamond can be employed in the sliding bearing application of continuous conveyors used in mass production systems.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.