石墨烯超晶格中可调谐亚带间等离子体极化子的出现

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2023-03-01 DOI:10.1117/1.AP.5.2.026004
Minwoo Jung, G. Shvets
{"title":"石墨烯超晶格中可调谐亚带间等离子体极化子的出现","authors":"Minwoo Jung, G. Shvets","doi":"10.1117/1.AP.5.2.026004","DOIUrl":null,"url":null,"abstract":"Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D) materials is of great interest for various applications that require rapid tuning of electrical and optical responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions (ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band structures.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices\",\"authors\":\"Minwoo Jung, G. Shvets\",\"doi\":\"10.1117/1.AP.5.2.026004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D) materials is of great interest for various applications that require rapid tuning of electrical and optical responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions (ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band structures.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.5.2.026004\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.2.026004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要高迁移率二维(2D)材料的电子能带结构的按需修改对于需要快速调谐固态器件的电学和光学响应的各种应用具有很大的兴趣。虽然电可调的超晶格(SL)势已经被提出用于石墨烯中狄拉克电子的能带结构工程,但工程涌现的准粒子激发可以与光杂化的最终目标尚未实现。我们发现单层石墨烯中一维(1D) SL电位的极端调制在费米表面附近产生阶梯状的电子能级,导致由子带间跃迁(isbt)主导的光学导电性。一个特定的、实验上可实现的平台,包括在一维周期门和第二个无图案门之上的hbn封装石墨烯,可以产生强调制的静电电位。我们发现具有垂直于调制方向的大动量的狄拉克电子通过静电势的总内部反射进行波导,从而产生具有几乎相等能级的平坦子带。所预测的表面等离子体与电控isbt之间的超强耦合是产生可被光学探测的涌现的极化准粒子的原因。我们的研究为探索具有门可调谐电子能带结构的二维材料中的涌现极化开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices
Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D) materials is of great interest for various applications that require rapid tuning of electrical and optical responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions (ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Large-scale distributed diffractive-interference hybrid photonic chiplets Coherence entropy during propagation through complex media Authentication through residual attention-based processing of tampered optical responses Controlling the hidden parity in vectorial light with metasurfaces Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1