{"title":"基于DFIG和SCIG发电机的风能转换系统的机电研究","authors":"S. Bellarbi","doi":"10.46300/9104.2021.15.11","DOIUrl":null,"url":null,"abstract":"Generally speaking, asynchronous generators are used more frequently in medium power in wind energy conversion systems WECS applications. Depending on the power electronics converter used in the specific application, the operation of the asynchronous machine can be controlled in nested speed torque loops, using different torque control algorithms. Because WECS are highly nonlinear systems, but with smooth nonlinearities, a possible optimal control design solution can be the maximum power point tracking MPPT in this paper. This research describes a comparison of the power quality for wind power systems based on two generators: the squirrel-cage induction generator (SCIG), the doubly fed induction generator (DFIG). At first, we simulated SCIG and DFIG in MATLAB/Simulink and investigates the impact of this generators on the power system stability for compare the results and to comment on the best option based on the output characteristics of the generator and wind turbine. The technical objective of this research is to choose the most suitable generator adaptive with changing wind speeds and the most energy production","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromechanical Study the Wind Energy Conversion System Based DFIG and SCIG Generators\",\"authors\":\"S. Bellarbi\",\"doi\":\"10.46300/9104.2021.15.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally speaking, asynchronous generators are used more frequently in medium power in wind energy conversion systems WECS applications. Depending on the power electronics converter used in the specific application, the operation of the asynchronous machine can be controlled in nested speed torque loops, using different torque control algorithms. Because WECS are highly nonlinear systems, but with smooth nonlinearities, a possible optimal control design solution can be the maximum power point tracking MPPT in this paper. This research describes a comparison of the power quality for wind power systems based on two generators: the squirrel-cage induction generator (SCIG), the doubly fed induction generator (DFIG). At first, we simulated SCIG and DFIG in MATLAB/Simulink and investigates the impact of this generators on the power system stability for compare the results and to comment on the best option based on the output characteristics of the generator and wind turbine. The technical objective of this research is to choose the most suitable generator adaptive with changing wind speeds and the most energy production\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2021.15.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2021.15.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Electromechanical Study the Wind Energy Conversion System Based DFIG and SCIG Generators
Generally speaking, asynchronous generators are used more frequently in medium power in wind energy conversion systems WECS applications. Depending on the power electronics converter used in the specific application, the operation of the asynchronous machine can be controlled in nested speed torque loops, using different torque control algorithms. Because WECS are highly nonlinear systems, but with smooth nonlinearities, a possible optimal control design solution can be the maximum power point tracking MPPT in this paper. This research describes a comparison of the power quality for wind power systems based on two generators: the squirrel-cage induction generator (SCIG), the doubly fed induction generator (DFIG). At first, we simulated SCIG and DFIG in MATLAB/Simulink and investigates the impact of this generators on the power system stability for compare the results and to comment on the best option based on the output characteristics of the generator and wind turbine. The technical objective of this research is to choose the most suitable generator adaptive with changing wind speeds and the most energy production