{"title":"浸没边界法:历史与未来展望","authors":"R. Verzicco","doi":"10.1146/annurev-fluid-120720-022129","DOIUrl":null,"url":null,"abstract":"Immersed boundary methods (IBMs) are versatile and efficient computational techniques to solve flow problems in complex geometric configurations that retain the simplicity and efficiency of Cartesian structured meshes. Although these methods became known in the 1970s and gained credibility only in the new millennium, they had already been conceived and implemented at the beginning of the 1960s, even if the early computers of those times did not allow researchers to exploit their potential. Nowadays IBMs are established numerical schemes employed for the solution of many complex problems in which fluid mechanics may account for only part of the multiphysics dynamics. Despite the indisputable advantages, these methods also have drawbacks, and each problem should be carefully analyzed before deciding which particular IBM implementation is most suitable and whether additional modeling is necessary. High–Reynolds number flows constitute one of the main limitations of IBMs owing to the resolution of thin wall shear layers, which cannot benefit from anisotropic grid refinement at the boundaries. To alleviate this weakness, researchers have developed IBM-compliant wall models and local grid refinement strategies, although in these cases possible pitfalls must also be considered. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Immersed Boundary Methods: Historical Perspective and Future Outlook\",\"authors\":\"R. Verzicco\",\"doi\":\"10.1146/annurev-fluid-120720-022129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immersed boundary methods (IBMs) are versatile and efficient computational techniques to solve flow problems in complex geometric configurations that retain the simplicity and efficiency of Cartesian structured meshes. Although these methods became known in the 1970s and gained credibility only in the new millennium, they had already been conceived and implemented at the beginning of the 1960s, even if the early computers of those times did not allow researchers to exploit their potential. Nowadays IBMs are established numerical schemes employed for the solution of many complex problems in which fluid mechanics may account for only part of the multiphysics dynamics. Despite the indisputable advantages, these methods also have drawbacks, and each problem should be carefully analyzed before deciding which particular IBM implementation is most suitable and whether additional modeling is necessary. High–Reynolds number flows constitute one of the main limitations of IBMs owing to the resolution of thin wall shear layers, which cannot benefit from anisotropic grid refinement at the boundaries. To alleviate this weakness, researchers have developed IBM-compliant wall models and local grid refinement strategies, although in these cases possible pitfalls must also be considered. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-120720-022129\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-022129","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Immersed Boundary Methods: Historical Perspective and Future Outlook
Immersed boundary methods (IBMs) are versatile and efficient computational techniques to solve flow problems in complex geometric configurations that retain the simplicity and efficiency of Cartesian structured meshes. Although these methods became known in the 1970s and gained credibility only in the new millennium, they had already been conceived and implemented at the beginning of the 1960s, even if the early computers of those times did not allow researchers to exploit their potential. Nowadays IBMs are established numerical schemes employed for the solution of many complex problems in which fluid mechanics may account for only part of the multiphysics dynamics. Despite the indisputable advantages, these methods also have drawbacks, and each problem should be carefully analyzed before deciding which particular IBM implementation is most suitable and whether additional modeling is necessary. High–Reynolds number flows constitute one of the main limitations of IBMs owing to the resolution of thin wall shear layers, which cannot benefit from anisotropic grid refinement at the boundaries. To alleviate this weakness, researchers have developed IBM-compliant wall models and local grid refinement strategies, although in these cases possible pitfalls must also be considered. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.