{"title":"季节性暴雨预报方法","authors":"Jaekwang Kim","doi":"10.5121/CSIT.2021.111002","DOIUrl":null,"url":null,"abstract":"In this study, we study the technique for predicting heavy / non-rain rainfall after 6 hours from the present using the values of the weather attributes. Through this study, we investigated whether each attribute value is influenced by a specific pattern of weather maps representing heavy and non-heavy rains or seasonally when making heavy / non-heavy forecasts. For the experiment, a 20-year cumulative weather map was learned with Support Vector Machine (SVM) and tested using a set of correct answers for heavy rain and heavy rain. As a result of the experiment, it was found that the heavy rain prediction of SVM showed an accuracy rate of up to 70%, and that it was seasonal variation rather than a specific pattern that influenced the prediction.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Heavy Rain Forecasting Method\",\"authors\":\"Jaekwang Kim\",\"doi\":\"10.5121/CSIT.2021.111002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we study the technique for predicting heavy / non-rain rainfall after 6 hours from the present using the values of the weather attributes. Through this study, we investigated whether each attribute value is influenced by a specific pattern of weather maps representing heavy and non-heavy rains or seasonally when making heavy / non-heavy forecasts. For the experiment, a 20-year cumulative weather map was learned with Support Vector Machine (SVM) and tested using a set of correct answers for heavy rain and heavy rain. As a result of the experiment, it was found that the heavy rain prediction of SVM showed an accuracy rate of up to 70%, and that it was seasonal variation rather than a specific pattern that influenced the prediction.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/CSIT.2021.111002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2021.111002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this study, we study the technique for predicting heavy / non-rain rainfall after 6 hours from the present using the values of the weather attributes. Through this study, we investigated whether each attribute value is influenced by a specific pattern of weather maps representing heavy and non-heavy rains or seasonally when making heavy / non-heavy forecasts. For the experiment, a 20-year cumulative weather map was learned with Support Vector Machine (SVM) and tested using a set of correct answers for heavy rain and heavy rain. As a result of the experiment, it was found that the heavy rain prediction of SVM showed an accuracy rate of up to 70%, and that it was seasonal variation rather than a specific pattern that influenced the prediction.