Ashwin Vadlamannati, Dillon Herbert, Kartik Naik, S. Bryant, Mariah Mook, Zak Leonard, Andrew D. Abney, Sumedh Beknalkar, M. Bryant, C. Vermillion, Kenneth Granlund, A. Mazzoleni
{"title":"基于水池的拖曳系统,用于测试正在开发的从洋流中获取能量的系留水力装置","authors":"Ashwin Vadlamannati, Dillon Herbert, Kartik Naik, S. Bryant, Mariah Mook, Zak Leonard, Andrew D. Abney, Sumedh Beknalkar, M. Bryant, C. Vermillion, Kenneth Granlund, A. Mazzoleni","doi":"10.4031/mtsj.57.1.11","DOIUrl":null,"url":null,"abstract":"Abstract The immense potential for ocean current energy harvesting is being actively explored as the push for renewable energy becomes more urgent. This paper demonstrates a tow testing platform built to examine and validate mathematical models related to the performance\n of tethered, underwater, hydrokinetic devices in development to harvest energy from ocean currents, and presents experimental results illustrating how such a system can be used. The platform has been modularly designed to allow for the testing of various tethered, underwater energy-generation\n systems, including kite-based systems, coaxial turbines, and duct sails. Previous research on tethered energy-generating systems has primarily been focused on airborne systems. Additionally, the limited experimental research on tethered, underwater energy-generation systems has relied on a\n rigid rod for mechanical and electrical connections between the test articles and instrumentation. The tow testing platform presented in this paper accomplishes the mechanical and electrical connection through a dual-function tether, featuring internal conductors and an external sheath to\n support towing loads. The goal of this platform was to enable the emulation of ocean currents, which are largely unidirectional, and to retrofit a regular pool into a cost-effective, adaptable, small-scale tow tank test bed. The capabilities of the system include two-way communication with\n tethered devices, multiple towing profiles in order to emulate different flow regimes, real-time control, and differential velocities via dual winch operation.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pool-Based Tow System for Testing Tethered Hydrokinetic Devices Being Developed to Harvest Energy From Ocean Currents\",\"authors\":\"Ashwin Vadlamannati, Dillon Herbert, Kartik Naik, S. Bryant, Mariah Mook, Zak Leonard, Andrew D. Abney, Sumedh Beknalkar, M. Bryant, C. Vermillion, Kenneth Granlund, A. Mazzoleni\",\"doi\":\"10.4031/mtsj.57.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The immense potential for ocean current energy harvesting is being actively explored as the push for renewable energy becomes more urgent. This paper demonstrates a tow testing platform built to examine and validate mathematical models related to the performance\\n of tethered, underwater, hydrokinetic devices in development to harvest energy from ocean currents, and presents experimental results illustrating how such a system can be used. The platform has been modularly designed to allow for the testing of various tethered, underwater energy-generation\\n systems, including kite-based systems, coaxial turbines, and duct sails. Previous research on tethered energy-generating systems has primarily been focused on airborne systems. Additionally, the limited experimental research on tethered, underwater energy-generation systems has relied on a\\n rigid rod for mechanical and electrical connections between the test articles and instrumentation. The tow testing platform presented in this paper accomplishes the mechanical and electrical connection through a dual-function tether, featuring internal conductors and an external sheath to\\n support towing loads. The goal of this platform was to enable the emulation of ocean currents, which are largely unidirectional, and to retrofit a regular pool into a cost-effective, adaptable, small-scale tow tank test bed. The capabilities of the system include two-way communication with\\n tethered devices, multiple towing profiles in order to emulate different flow regimes, real-time control, and differential velocities via dual winch operation.\",\"PeriodicalId\":49878,\"journal\":{\"name\":\"Marine Technology Society Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Technology Society Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4031/mtsj.57.1.11\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.57.1.11","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Pool-Based Tow System for Testing Tethered Hydrokinetic Devices Being Developed to Harvest Energy From Ocean Currents
Abstract The immense potential for ocean current energy harvesting is being actively explored as the push for renewable energy becomes more urgent. This paper demonstrates a tow testing platform built to examine and validate mathematical models related to the performance
of tethered, underwater, hydrokinetic devices in development to harvest energy from ocean currents, and presents experimental results illustrating how such a system can be used. The platform has been modularly designed to allow for the testing of various tethered, underwater energy-generation
systems, including kite-based systems, coaxial turbines, and duct sails. Previous research on tethered energy-generating systems has primarily been focused on airborne systems. Additionally, the limited experimental research on tethered, underwater energy-generation systems has relied on a
rigid rod for mechanical and electrical connections between the test articles and instrumentation. The tow testing platform presented in this paper accomplishes the mechanical and electrical connection through a dual-function tether, featuring internal conductors and an external sheath to
support towing loads. The goal of this platform was to enable the emulation of ocean currents, which are largely unidirectional, and to retrofit a regular pool into a cost-effective, adaptable, small-scale tow tank test bed. The capabilities of the system include two-way communication with
tethered devices, multiple towing profiles in order to emulate different flow regimes, real-time control, and differential velocities via dual winch operation.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.