Lin Shi , Hao-Jia Sun , Jing-Jing Zeng , Zi-Qian Liang , Yun-Hua Lin , Su-Ning Huang , Jiang-Hui Zeng , Li Yang , Hao Chen , Jie Luo , Kang-Lai Wei
{"title":"卵巢癌中miR-141-3p过表达的评价","authors":"Lin Shi , Hao-Jia Sun , Jing-Jing Zeng , Zi-Qian Liang , Yun-Hua Lin , Su-Ning Huang , Jiang-Hui Zeng , Li Yang , Hao Chen , Jie Luo , Kang-Lai Wei","doi":"10.1016/j.ejbt.2022.04.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The expression of miR-141-3p in many malignant tumors has been verified. Nevertheless, the relationship between ovarian cancer and miR-141-3p remains undetermined. Therefore, further exploration is required.</p></div><div><h3>Results</h3><p>According to data from 100 samples, the final results of RT-qPCR showed that miR-141-3p was highly expressed in ovarian cancer. Furthermore, miR-141-3p was able to distinguish ovarian cancer cells from ovary tissues. The most significant Kyoto Encyclopedia of Genes and Genomes pathway, was regulation of lipolysis in adipocytes in ovarian cancer. The expression of PIK3R1 was negatively correlated with miR-141- 3p. PIK3R1 has a combing site with miR-141-3p.</p></div><div><h3>Conclusions</h3><p>This study examined the expression levels and mechanism of miR-141-3p in ovarian cancer for the first time. The results suggested that miR-141-3p may promote the occurrence of ovarian cancer by down-regulating PIK3R1.</p><p><strong>How to cite:</strong> Shi L, Sun H-J, Zeng J-J, et al. Evaluation of miR-141-3p over-expression in ovarian cancer. Electron J Biotechnol 2022;58. https://doi.org/10.1016/j.ejbt.2022.04.006</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"58 ","pages":"Pages 14-24"},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000173/pdfft?md5=d2d49ce0b2037396953cc02d7dee69ea&pid=1-s2.0-S0717345822000173-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Evaluation of miR-141-3p over-expression in ovarian cancer\",\"authors\":\"Lin Shi , Hao-Jia Sun , Jing-Jing Zeng , Zi-Qian Liang , Yun-Hua Lin , Su-Ning Huang , Jiang-Hui Zeng , Li Yang , Hao Chen , Jie Luo , Kang-Lai Wei\",\"doi\":\"10.1016/j.ejbt.2022.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The expression of miR-141-3p in many malignant tumors has been verified. Nevertheless, the relationship between ovarian cancer and miR-141-3p remains undetermined. Therefore, further exploration is required.</p></div><div><h3>Results</h3><p>According to data from 100 samples, the final results of RT-qPCR showed that miR-141-3p was highly expressed in ovarian cancer. Furthermore, miR-141-3p was able to distinguish ovarian cancer cells from ovary tissues. The most significant Kyoto Encyclopedia of Genes and Genomes pathway, was regulation of lipolysis in adipocytes in ovarian cancer. The expression of PIK3R1 was negatively correlated with miR-141- 3p. PIK3R1 has a combing site with miR-141-3p.</p></div><div><h3>Conclusions</h3><p>This study examined the expression levels and mechanism of miR-141-3p in ovarian cancer for the first time. The results suggested that miR-141-3p may promote the occurrence of ovarian cancer by down-regulating PIK3R1.</p><p><strong>How to cite:</strong> Shi L, Sun H-J, Zeng J-J, et al. Evaluation of miR-141-3p over-expression in ovarian cancer. Electron J Biotechnol 2022;58. https://doi.org/10.1016/j.ejbt.2022.04.006</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"58 \",\"pages\":\"Pages 14-24\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000173/pdfft?md5=d2d49ce0b2037396953cc02d7dee69ea&pid=1-s2.0-S0717345822000173-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000173\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000173","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Evaluation of miR-141-3p over-expression in ovarian cancer
Background
The expression of miR-141-3p in many malignant tumors has been verified. Nevertheless, the relationship between ovarian cancer and miR-141-3p remains undetermined. Therefore, further exploration is required.
Results
According to data from 100 samples, the final results of RT-qPCR showed that miR-141-3p was highly expressed in ovarian cancer. Furthermore, miR-141-3p was able to distinguish ovarian cancer cells from ovary tissues. The most significant Kyoto Encyclopedia of Genes and Genomes pathway, was regulation of lipolysis in adipocytes in ovarian cancer. The expression of PIK3R1 was negatively correlated with miR-141- 3p. PIK3R1 has a combing site with miR-141-3p.
Conclusions
This study examined the expression levels and mechanism of miR-141-3p in ovarian cancer for the first time. The results suggested that miR-141-3p may promote the occurrence of ovarian cancer by down-regulating PIK3R1.
How to cite: Shi L, Sun H-J, Zeng J-J, et al. Evaluation of miR-141-3p over-expression in ovarian cancer. Electron J Biotechnol 2022;58. https://doi.org/10.1016/j.ejbt.2022.04.006
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering