应力集中有限元分析子模型的验证

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2019-09-01 DOI:10.1115/1.4045232
A. Kardak, G. Sinclair
{"title":"应力集中有限元分析子模型的验证","authors":"A. Kardak, G. Sinclair","doi":"10.1115/1.4045232","DOIUrl":null,"url":null,"abstract":"\n Submodeling enables finite element engineers to focus analysis on the subregion containing the stress concentrator of interest with consequent computational savings. Such benefits are only really gained if the boundary conditions on the edges of the subregion that are drawn from an initial global finite element analysis (FEA) are verified to have been captured sufficiently accurately. Here, we offer a two-pronged approach aimed at realizing such solution verification. The first element of this approach is an improved means of assessing the error induced by submodel boundary conditions. The second element is a systematic sizing of the submodel region so that boundary-condition errors become acceptable. The resulting submodel procedure is demonstrated on a series of two-dimensional (2D) configurations with significant stress concentrations: four test problems and one application. For the test problems, the assessment means are uniformly successful in determining when submodel boundary conditions are accurate and when they are not. When, at first, they are not, the sizing approach is also consistently successful in enlarging submodel regions until submodel boundary conditions do become sufficiently accurate.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of Submodeling for the Finite Element Analysis of Stress Concentrations\",\"authors\":\"A. Kardak, G. Sinclair\",\"doi\":\"10.1115/1.4045232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Submodeling enables finite element engineers to focus analysis on the subregion containing the stress concentrator of interest with consequent computational savings. Such benefits are only really gained if the boundary conditions on the edges of the subregion that are drawn from an initial global finite element analysis (FEA) are verified to have been captured sufficiently accurately. Here, we offer a two-pronged approach aimed at realizing such solution verification. The first element of this approach is an improved means of assessing the error induced by submodel boundary conditions. The second element is a systematic sizing of the submodel region so that boundary-condition errors become acceptable. The resulting submodel procedure is demonstrated on a series of two-dimensional (2D) configurations with significant stress concentrations: four test problems and one application. For the test problems, the assessment means are uniformly successful in determining when submodel boundary conditions are accurate and when they are not. When, at first, they are not, the sizing approach is also consistently successful in enlarging submodel regions until submodel boundary conditions do become sufficiently accurate.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4045232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4045232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

子模型使有限元工程师能够将分析重点放在包含感兴趣的应力集中器的子区域上,从而节省计算量。只有当从初始全局有限元分析(FEA)中提取的子区域边缘上的边界条件被验证为已经足够准确地捕获时,才能真正获得这样的好处。在这里,我们提供了一种双管齐下的方法,旨在实现这种解决方案的核查。该方法的第一个要素是评估子模型边界条件引起的误差的改进方法。第二个元素是子模型区域的系统大小,以便边界条件误差变得可接受。由此产生的子模型程序在一系列具有显著应力集中的二维(2D)配置上进行了演示:四个测试问题和一个应用程序。对于测试问题,评估方法一致成功地确定了子模型边界条件何时准确,何时不准确。当一开始不是这样时,尺寸确定方法在扩大子模型区域方面也始终是成功的,直到子模型边界条件变得足够准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of Submodeling for the Finite Element Analysis of Stress Concentrations
Submodeling enables finite element engineers to focus analysis on the subregion containing the stress concentrator of interest with consequent computational savings. Such benefits are only really gained if the boundary conditions on the edges of the subregion that are drawn from an initial global finite element analysis (FEA) are verified to have been captured sufficiently accurately. Here, we offer a two-pronged approach aimed at realizing such solution verification. The first element of this approach is an improved means of assessing the error induced by submodel boundary conditions. The second element is a systematic sizing of the submodel region so that boundary-condition errors become acceptable. The resulting submodel procedure is demonstrated on a series of two-dimensional (2D) configurations with significant stress concentrations: four test problems and one application. For the test problems, the assessment means are uniformly successful in determining when submodel boundary conditions are accurate and when they are not. When, at first, they are not, the sizing approach is also consistently successful in enlarging submodel regions until submodel boundary conditions do become sufficiently accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
Automatic Ground-Truth Image Labeling for Deep Neural Network Training and Evaluation Using Industrial Robotics and Motion Capture Using Responsive Feedback in Scaling a Gender Norms-Shifting Adolescent Sexual and Reproductive Health Intervention in the Democratic Republic of Congo. A Solution Verification Study For Urans Simulations of Flow Over a 5:1 Rectangular Cylinder Using Grid Convergence Index And Least Squares Procedures Strategies for Computational Fluid Dynamics Validation Experiments On the Verification of Finite Element Determinations of Stress Concentration Factors for Handbooks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1