如何部署机器人移动履行系统

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2023-09-04 DOI:10.1287/trsc.2022.0265
Lu Zhen, Zheyi Tan, René de Koster, Shuaian Wang
{"title":"如何部署机器人移动履行系统","authors":"Lu Zhen, Zheyi Tan, René de Koster, Shuaian Wang","doi":"10.1287/trsc.2022.0265","DOIUrl":null,"url":null,"abstract":"Many warehouses involved in e-commerce order fulfillment use robotic mobile fulfillment systems. Because demand and variability can be high, scheduling orders, robots, and storage pods in interaction with manual workstations are critical to obtaining high performance. Simultaneously, the scheduling problem is extremely complicated because of interactions between decisions, many of which must be taken timely because of short planning horizons and a constantly changing environment. This paper models all such scheduling decisions in combination to minimize order fulfillment time. We propose two decision methods for the above scheduling problem. The models batch the orders using different batching methods and assign orders and batches to pods and workstations in sequence and robots to jobs. Order picking and stock replenishment operations are included in the models. We conduct numerical experiments based on a real-world case to validate the efficacy and efficiency of the model and algorithm. Instances with 14 workstations, 400 orders, 300 stock-keeping units (SKUs), 160 pods, and 160 robots can be solved to near optimality within four minutes. Our methods can be applied to large instances, for example, using a rolling horizon. Because our model can be solved relatively fast, it can be used to take managerial decisions and obtain executive insights. Our results show that making integrated decisions, even when done heuristically, is more beneficial than sequential, isolated optimization. We also find that positioning pick stations close together along one of the system’s long sides is efficient. The replenishment stations can be grouped along another side. Another finding is that SKU diversity per pod and SKU dispersion over pods have strong and positive impacts on the total completion time of handling order batches. Funding: This work was supported by National Natural Science Foundation of China [72025103, 72361137001, 71831008, 72071173] and the Research Grants Council of the Hong Kong Special Administrative Region, China [HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0265 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Deploy Robotic Mobile Fulfillment Systems\",\"authors\":\"Lu Zhen, Zheyi Tan, René de Koster, Shuaian Wang\",\"doi\":\"10.1287/trsc.2022.0265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many warehouses involved in e-commerce order fulfillment use robotic mobile fulfillment systems. Because demand and variability can be high, scheduling orders, robots, and storage pods in interaction with manual workstations are critical to obtaining high performance. Simultaneously, the scheduling problem is extremely complicated because of interactions between decisions, many of which must be taken timely because of short planning horizons and a constantly changing environment. This paper models all such scheduling decisions in combination to minimize order fulfillment time. We propose two decision methods for the above scheduling problem. The models batch the orders using different batching methods and assign orders and batches to pods and workstations in sequence and robots to jobs. Order picking and stock replenishment operations are included in the models. We conduct numerical experiments based on a real-world case to validate the efficacy and efficiency of the model and algorithm. Instances with 14 workstations, 400 orders, 300 stock-keeping units (SKUs), 160 pods, and 160 robots can be solved to near optimality within four minutes. Our methods can be applied to large instances, for example, using a rolling horizon. Because our model can be solved relatively fast, it can be used to take managerial decisions and obtain executive insights. Our results show that making integrated decisions, even when done heuristically, is more beneficial than sequential, isolated optimization. We also find that positioning pick stations close together along one of the system’s long sides is efficient. The replenishment stations can be grouped along another side. Another finding is that SKU diversity per pod and SKU dispersion over pods have strong and positive impacts on the total completion time of handling order batches. Funding: This work was supported by National Natural Science Foundation of China [72025103, 72361137001, 71831008, 72071173] and the Research Grants Council of the Hong Kong Special Administrative Region, China [HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0265 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0265\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

许多涉及电子商务订单履行的仓库使用机器人移动履行系统。由于需求和可变性可能很高,与手动工作站交互的调度订单、机器人和存储舱对于获得高性能至关重要。同时,由于决策之间的相互作用,调度问题极其复杂,其中许多决策必须及时采取,因为计划期限短,环境不断变化。本文对所有这些调度决策进行组合建模,以最小化订单履行时间。针对上述调度问题,我们提出了两种决策方法。这些模型使用不同的批处理方法对订单进行批处理,并按顺序将订单和批分配给pod和工作站,将机器人分配给作业。订单挑选和库存补充操作包括在模型中。通过实际案例的数值实验,验证了模型和算法的有效性和效率。具有14个工作站、400个订单、300个库存单位(sku)、160个pod和160个机器人的实例可以在4分钟内解决到接近最优状态。我们的方法可以应用于大型实例,例如,使用滚动地平线。因为我们的模型可以相对快速地解决,所以它可以用于做出管理决策并获得执行洞察力。我们的结果表明,做出综合决策,即使是启发式的,也比顺序的、孤立的优化更有益。我们还发现,将拣货站沿着系统的长边靠近在一起是有效的。补给站可以在另一侧分组。另一个发现是,每个豆荚的SKU多样性和豆荚上的SKU分散对处理订单批次的总完成时间有强烈的积极影响。基金资助:国家自然科学基金[72025103,72361137001,71831008,72071173]和香港特别行政区研究资助局[HKSAR RGC TRS T32-707/22-N]资助。补充材料:电子伴侣可在https://doi.org/10.1287/trsc.2022.0265上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to Deploy Robotic Mobile Fulfillment Systems
Many warehouses involved in e-commerce order fulfillment use robotic mobile fulfillment systems. Because demand and variability can be high, scheduling orders, robots, and storage pods in interaction with manual workstations are critical to obtaining high performance. Simultaneously, the scheduling problem is extremely complicated because of interactions between decisions, many of which must be taken timely because of short planning horizons and a constantly changing environment. This paper models all such scheduling decisions in combination to minimize order fulfillment time. We propose two decision methods for the above scheduling problem. The models batch the orders using different batching methods and assign orders and batches to pods and workstations in sequence and robots to jobs. Order picking and stock replenishment operations are included in the models. We conduct numerical experiments based on a real-world case to validate the efficacy and efficiency of the model and algorithm. Instances with 14 workstations, 400 orders, 300 stock-keeping units (SKUs), 160 pods, and 160 robots can be solved to near optimality within four minutes. Our methods can be applied to large instances, for example, using a rolling horizon. Because our model can be solved relatively fast, it can be used to take managerial decisions and obtain executive insights. Our results show that making integrated decisions, even when done heuristically, is more beneficial than sequential, isolated optimization. We also find that positioning pick stations close together along one of the system’s long sides is efficient. The replenishment stations can be grouped along another side. Another finding is that SKU diversity per pod and SKU dispersion over pods have strong and positive impacts on the total completion time of handling order batches. Funding: This work was supported by National Natural Science Foundation of China [72025103, 72361137001, 71831008, 72071173] and the Research Grants Council of the Hong Kong Special Administrative Region, China [HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0265 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1