{"title":"ZrC/ nbc增强crmneconi涂层的高温磨损性能","authors":"Dacheng Sun, Yangchuan Cai, Lisong Zhu, Jianv Han","doi":"10.1080/02670844.2022.2153497","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nowadays, studies of high entropy alloys (HEAs) have shown excellent properties. To improve the high-temperature wear resistance of CrMnFeCoNi alloy, refractory carbides (NbC and ZrC, respectively) reinforced CrMnFeCoNi composite coating were prepared by laser cladding (LC), and its wear performance was investigated. The composite coating showed no cracks or other defects that had metallurgical bonding with the substrate. Those coatings exhibited oxidative and adhesive wear mechanisms in reciprocating wear tests at 600°C. In contrast to the strengthening of NbC, the ZrC in the coating rapidly oxidized during high-temperature wear, forming a large amount of ZrO2. These oxides formed in wear promote the formation of a protective film, further improving the oxidation resistance and wear resistance of the coating.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"38 1","pages":"778 - 785"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-temperature wear behaviour of ZrC/NbC-reinforced CrMnFeCoNi coatings\",\"authors\":\"Dacheng Sun, Yangchuan Cai, Lisong Zhu, Jianv Han\",\"doi\":\"10.1080/02670844.2022.2153497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Nowadays, studies of high entropy alloys (HEAs) have shown excellent properties. To improve the high-temperature wear resistance of CrMnFeCoNi alloy, refractory carbides (NbC and ZrC, respectively) reinforced CrMnFeCoNi composite coating were prepared by laser cladding (LC), and its wear performance was investigated. The composite coating showed no cracks or other defects that had metallurgical bonding with the substrate. Those coatings exhibited oxidative and adhesive wear mechanisms in reciprocating wear tests at 600°C. In contrast to the strengthening of NbC, the ZrC in the coating rapidly oxidized during high-temperature wear, forming a large amount of ZrO2. These oxides formed in wear promote the formation of a protective film, further improving the oxidation resistance and wear resistance of the coating.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"38 1\",\"pages\":\"778 - 785\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2022.2153497\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2022.2153497","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
High-temperature wear behaviour of ZrC/NbC-reinforced CrMnFeCoNi coatings
ABSTRACT Nowadays, studies of high entropy alloys (HEAs) have shown excellent properties. To improve the high-temperature wear resistance of CrMnFeCoNi alloy, refractory carbides (NbC and ZrC, respectively) reinforced CrMnFeCoNi composite coating were prepared by laser cladding (LC), and its wear performance was investigated. The composite coating showed no cracks or other defects that had metallurgical bonding with the substrate. Those coatings exhibited oxidative and adhesive wear mechanisms in reciprocating wear tests at 600°C. In contrast to the strengthening of NbC, the ZrC in the coating rapidly oxidized during high-temperature wear, forming a large amount of ZrO2. These oxides formed in wear promote the formation of a protective film, further improving the oxidation resistance and wear resistance of the coating.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.