{"title":"磁性纳米颗粒在旋转磁场中的加热","authors":"N. Usov, O. N. Serebryakova, E. M. Gubanova","doi":"10.1080/15567265.2019.1689589","DOIUrl":null,"url":null,"abstract":"ABSTRACT The specific absorption rate of magnetic nanoparticles in a rotating magnetic field has been calculated taking into account both thermal fluctuations of the particle magnetic moments and strong magneto-dipole interactions in nanoparticle clusters with various filling factors. For an assembly of interacting superparamagnetic nanoparticles, the maximal values of the specific absorption rate in a rotating magnetic field are found to be 30–40% greater than that in alternating magnetic field. In addition, for the given filling factor and magnetic field amplitude in rotating magnetic field the nanoparticles in a wider range of diameters can effectively contribute to the energy absorption process. Therefore, the use of rotating magnetic field seems preferable in magnetic nanoparticle hyperthermia.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"20 - 28"},"PeriodicalIF":2.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1689589","citationCount":"4","resultStr":"{\"title\":\"The heating of magnetic nanoparticles in a rotating magnetic field\",\"authors\":\"N. Usov, O. N. Serebryakova, E. M. Gubanova\",\"doi\":\"10.1080/15567265.2019.1689589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The specific absorption rate of magnetic nanoparticles in a rotating magnetic field has been calculated taking into account both thermal fluctuations of the particle magnetic moments and strong magneto-dipole interactions in nanoparticle clusters with various filling factors. For an assembly of interacting superparamagnetic nanoparticles, the maximal values of the specific absorption rate in a rotating magnetic field are found to be 30–40% greater than that in alternating magnetic field. In addition, for the given filling factor and magnetic field amplitude in rotating magnetic field the nanoparticles in a wider range of diameters can effectively contribute to the energy absorption process. Therefore, the use of rotating magnetic field seems preferable in magnetic nanoparticle hyperthermia.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"24 1\",\"pages\":\"20 - 28\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2019.1689589\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2019.1689589\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1689589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The heating of magnetic nanoparticles in a rotating magnetic field
ABSTRACT The specific absorption rate of magnetic nanoparticles in a rotating magnetic field has been calculated taking into account both thermal fluctuations of the particle magnetic moments and strong magneto-dipole interactions in nanoparticle clusters with various filling factors. For an assembly of interacting superparamagnetic nanoparticles, the maximal values of the specific absorption rate in a rotating magnetic field are found to be 30–40% greater than that in alternating magnetic field. In addition, for the given filling factor and magnetic field amplitude in rotating magnetic field the nanoparticles in a wider range of diameters can effectively contribute to the energy absorption process. Therefore, the use of rotating magnetic field seems preferable in magnetic nanoparticle hyperthermia.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.