NDTRA-MAT:一种评估无线传感器网络中数据传输速率、降低误报率和避免恶意活动丢包率的新技术

Minakshi Sahu, Nilambar Sethi, Susant Kumar Das, Umashankar Ghugar
{"title":"NDTRA-MAT:一种评估无线传感器网络中数据传输速率、降低误报率和避免恶意活动丢包率的新技术","authors":"Minakshi Sahu, Nilambar Sethi, Susant Kumar Das, Umashankar Ghugar","doi":"10.22247/ijcna/2023/218507","DOIUrl":null,"url":null,"abstract":"– Wireless Sensor Networks (WSN) are under attack from insider packet drops. Each node will employ a trust mechanism to assess the trustworthiness of its neighbor nodes to send packets to only the trustworthy neighbors to distinguish packets dropped by inside intruders from network faults. The false alert arises when a normal node's trust value decreases and is removed from the routing paths using trust-aware routing algorithms. Optimizing the packet delivery ratio is a critical design consideration for WSNs. WSNs have long benefited from a secure zone-based routing mechanism already in place. A new routing criterion was developed for packet transfer in multi-hop communication. The routing metric was designed to protect against message manipulation, dropping, and flooding assaults. The method used an alternative way to route a packet while avoiding dangerous zones safely and efficiently in the routing process. Despite energy conservation and greater attack resilience, congestion in the WSN has increased, and the packet delivery ratio has been reduced. Each node has computing power that serves as a transceiver for the network. A packet-dropping node is hacked and forwards any or all the packets it receives. All or some boxes are packages modified by a hacked node that is intended to deliver them. In multi-hop sensor networks, packet dropping and alteration are two popular methods that an adversary can use to interrupt communication. The proposed model NDTRA-MAT is used to avoid packet loss with reduced false alarms. It is compared with the existing models, and the performance is calculated in terms of Malicious Node Detection Accuracy Levels","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NDTRA-MAT: A Novel Technique for Evaluating the Data Transfer Rate, Reducing the False Alarm Rate, and avoiding Packet Droppings Rate against Malicious Activity in Wireless Sensor Networks\",\"authors\":\"Minakshi Sahu, Nilambar Sethi, Susant Kumar Das, Umashankar Ghugar\",\"doi\":\"10.22247/ijcna/2023/218507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– Wireless Sensor Networks (WSN) are under attack from insider packet drops. Each node will employ a trust mechanism to assess the trustworthiness of its neighbor nodes to send packets to only the trustworthy neighbors to distinguish packets dropped by inside intruders from network faults. The false alert arises when a normal node's trust value decreases and is removed from the routing paths using trust-aware routing algorithms. Optimizing the packet delivery ratio is a critical design consideration for WSNs. WSNs have long benefited from a secure zone-based routing mechanism already in place. A new routing criterion was developed for packet transfer in multi-hop communication. The routing metric was designed to protect against message manipulation, dropping, and flooding assaults. The method used an alternative way to route a packet while avoiding dangerous zones safely and efficiently in the routing process. Despite energy conservation and greater attack resilience, congestion in the WSN has increased, and the packet delivery ratio has been reduced. Each node has computing power that serves as a transceiver for the network. A packet-dropping node is hacked and forwards any or all the packets it receives. All or some boxes are packages modified by a hacked node that is intended to deliver them. In multi-hop sensor networks, packet dropping and alteration are two popular methods that an adversary can use to interrupt communication. The proposed model NDTRA-MAT is used to avoid packet loss with reduced false alarms. It is compared with the existing models, and the performance is calculated in terms of Malicious Node Detection Accuracy Levels\",\"PeriodicalId\":36485,\"journal\":{\"name\":\"International Journal of Computer Networks and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Networks and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22247/ijcna/2023/218507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/218507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

–无线传感器网络(WSN)正受到内部数据包丢失的攻击。每个节点将采用信任机制来评估其邻居节点的可信度,以仅向可信任的邻居发送分组,从而将内部入侵者丢弃的分组与网络故障区分开来。当正常节点的信任值降低并使用信任感知路由算法从路由路径中删除时,会出现错误警报。优化数据包传输率是无线传感器网络的一个关键设计考虑因素。长期以来,无线传感器网络一直受益于已经存在的基于安全区域的路由机制。针对多跳通信中的数据包传输问题,提出了一种新的路由准则。路由度量旨在防止消息操纵、丢弃和泛滥攻击。该方法使用了一种替代方法来路由数据包,同时在路由过程中安全有效地避开危险区域。尽管节省了能源并提高了攻击弹性,但WSN中的拥塞增加了,并且降低了数据包传输率。每个节点都具有作为网络收发器的计算能力。数据包丢弃节点被黑客入侵并转发它接收到的任何或所有数据包。所有或一些盒子都是被黑客入侵的节点修改的包,目的是传递它们。在多跳传感器网络中,数据包丢弃和更改是对手用来中断通信的两种常用方法。所提出的模型NDTRA-MAT用于避免分组丢失,同时减少了误报。将其与现有模型进行比较,并根据恶意节点检测精度级别计算性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NDTRA-MAT: A Novel Technique for Evaluating the Data Transfer Rate, Reducing the False Alarm Rate, and avoiding Packet Droppings Rate against Malicious Activity in Wireless Sensor Networks
– Wireless Sensor Networks (WSN) are under attack from insider packet drops. Each node will employ a trust mechanism to assess the trustworthiness of its neighbor nodes to send packets to only the trustworthy neighbors to distinguish packets dropped by inside intruders from network faults. The false alert arises when a normal node's trust value decreases and is removed from the routing paths using trust-aware routing algorithms. Optimizing the packet delivery ratio is a critical design consideration for WSNs. WSNs have long benefited from a secure zone-based routing mechanism already in place. A new routing criterion was developed for packet transfer in multi-hop communication. The routing metric was designed to protect against message manipulation, dropping, and flooding assaults. The method used an alternative way to route a packet while avoiding dangerous zones safely and efficiently in the routing process. Despite energy conservation and greater attack resilience, congestion in the WSN has increased, and the packet delivery ratio has been reduced. Each node has computing power that serves as a transceiver for the network. A packet-dropping node is hacked and forwards any or all the packets it receives. All or some boxes are packages modified by a hacked node that is intended to deliver them. In multi-hop sensor networks, packet dropping and alteration are two popular methods that an adversary can use to interrupt communication. The proposed model NDTRA-MAT is used to avoid packet loss with reduced false alarms. It is compared with the existing models, and the performance is calculated in terms of Malicious Node Detection Accuracy Levels
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Networks and Applications
International Journal of Computer Networks and Applications Computer Science-Computer Science Applications
CiteScore
2.30
自引率
0.00%
发文量
40
期刊最新文献
Co-Ordinated Blackhole and Grayhole Attack Detection Using Smart & Secure Ad Hoc On-Demand Distance Vector Routing Protocol in MANETs Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) for Minimizing the Energy Consumption in Flying Ad-Hoc Network TriChain: Kangaroo-Based Intrusion Detection for Secure Multipath Route Discovery and Route Maintenance in MANET Using Advanced Routing Protocol Expedient Intrusion Detection System in MANET Using Robust Dragonfly-Optimized Enhanced Naive Bayes (RDO-ENB) Vehicular Ad Hoc Networks Assisted Clustering Nodular Framework for Optimal Packet Routing and Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1