{"title":"熔融丝加工工艺制备的经化学处理的柔性体心立方晶格结构的表征","authors":"Nidhi Dixit, Prashant K Jain","doi":"10.1089/3dp.2023.0049","DOIUrl":null,"url":null,"abstract":"<p><p>Fused filament fabrication (FFF) has opened new opportunities for the effortless fabrication of complex structures at low cost. The additively manufactured lattice structures have been widely used in different sectors. However, the parts fabricated through FFF suffered from poor surface and dimensional characteristics. These disadvantages have been overcome by using different post-processing techniques. The present investigation has been focused on the post-processing of flexible lattice structures through chemical treatment methods. The flexible lattice structures have been fabricated by using thermoplastic polyurethane material. Body-centered cubic lattice structures have been chosen for the present study. The fabricated lattice structures have been post-processed using dimethyl sulfoxide solvent through the chemical immersion method. The response characteristics chosen for the present study were surface roughness, compressive strength, and dimensional accuracy. The measurement has been taken before and after the chemical treatment method for comparison purpose. The results of experimental studies depicted that the proposed methodology significantly enhanced the surface quality and dimensional accuracy, whereas compressive strength has been observed to be slightly reduced after the post-processing method.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443119/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Chemically Treated Flexible Body-Centered Cubic Lattice Structures Fabricated by Fused Filament Fabrication Process.\",\"authors\":\"Nidhi Dixit, Prashant K Jain\",\"doi\":\"10.1089/3dp.2023.0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fused filament fabrication (FFF) has opened new opportunities for the effortless fabrication of complex structures at low cost. The additively manufactured lattice structures have been widely used in different sectors. However, the parts fabricated through FFF suffered from poor surface and dimensional characteristics. These disadvantages have been overcome by using different post-processing techniques. The present investigation has been focused on the post-processing of flexible lattice structures through chemical treatment methods. The flexible lattice structures have been fabricated by using thermoplastic polyurethane material. Body-centered cubic lattice structures have been chosen for the present study. The fabricated lattice structures have been post-processed using dimethyl sulfoxide solvent through the chemical immersion method. The response characteristics chosen for the present study were surface roughness, compressive strength, and dimensional accuracy. The measurement has been taken before and after the chemical treatment method for comparison purpose. The results of experimental studies depicted that the proposed methodology significantly enhanced the surface quality and dimensional accuracy, whereas compressive strength has been observed to be slightly reduced after the post-processing method.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2023.0049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Characterization of Chemically Treated Flexible Body-Centered Cubic Lattice Structures Fabricated by Fused Filament Fabrication Process.
Fused filament fabrication (FFF) has opened new opportunities for the effortless fabrication of complex structures at low cost. The additively manufactured lattice structures have been widely used in different sectors. However, the parts fabricated through FFF suffered from poor surface and dimensional characteristics. These disadvantages have been overcome by using different post-processing techniques. The present investigation has been focused on the post-processing of flexible lattice structures through chemical treatment methods. The flexible lattice structures have been fabricated by using thermoplastic polyurethane material. Body-centered cubic lattice structures have been chosen for the present study. The fabricated lattice structures have been post-processed using dimethyl sulfoxide solvent through the chemical immersion method. The response characteristics chosen for the present study were surface roughness, compressive strength, and dimensional accuracy. The measurement has been taken before and after the chemical treatment method for comparison purpose. The results of experimental studies depicted that the proposed methodology significantly enhanced the surface quality and dimensional accuracy, whereas compressive strength has been observed to be slightly reduced after the post-processing method.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.