V. Pourahmadi, H. Alameddine, M. A. Salahuddin, R. Boutaba
{"title":"发现边缘异常:基于离群暴露的跨孤岛联合学习DDoS检测","authors":"V. Pourahmadi, H. Alameddine, M. A. Salahuddin, R. Boutaba","doi":"10.1109/TDSC.2022.3224896","DOIUrl":null,"url":null,"abstract":"Distributed Denial-of-Service (DDoS) attacks are expected to continue plaguing service availability in emerging networks which rely on distributed edge clouds to offer critical, latency-sensitive applications. However, edge servers increase the network attack surface, which is exacerbated with the massive number of connected Internet of Things (IoT) devices that can be weaponized to launch DDoS attacks. Therefore, it is crucial to detect DDoS attacks early, i.e., at the network edge. In this paper, we empower the network edge with intelligent DDoS detection by learning from similarities between different data and DDoS attacks available across the edge servers. To this end, we develop a novel Outlier Exposure (OE)-enabled cross-silo Federated Learning framework, namely FedOE. FedOE enables distributed training of OE-based ML models using a limited number of labeled outliers (i.e., attack flows) experienced at edge servers. We propose a novel OE-based Autoencoder (oAE) that can better discriminate anomalies in comparison to the widely adopted traditional Autoencoder, using a tailored, OE-based loss function. We evaluate oAE in FedOE and demonstrate its ability to generalize to zero-day attacks, with just 50 labeled attack flows per edge server. The results show that oAE achieves a high F1-score for most DDoS attacks, outclassing its non-OE counterpart.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4002-4015"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spotting Anomalies at the Edge: Outlier Exposure-Based Cross-Silo Federated Learning for DDoS Detection\",\"authors\":\"V. Pourahmadi, H. Alameddine, M. A. Salahuddin, R. Boutaba\",\"doi\":\"10.1109/TDSC.2022.3224896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Denial-of-Service (DDoS) attacks are expected to continue plaguing service availability in emerging networks which rely on distributed edge clouds to offer critical, latency-sensitive applications. However, edge servers increase the network attack surface, which is exacerbated with the massive number of connected Internet of Things (IoT) devices that can be weaponized to launch DDoS attacks. Therefore, it is crucial to detect DDoS attacks early, i.e., at the network edge. In this paper, we empower the network edge with intelligent DDoS detection by learning from similarities between different data and DDoS attacks available across the edge servers. To this end, we develop a novel Outlier Exposure (OE)-enabled cross-silo Federated Learning framework, namely FedOE. FedOE enables distributed training of OE-based ML models using a limited number of labeled outliers (i.e., attack flows) experienced at edge servers. We propose a novel OE-based Autoencoder (oAE) that can better discriminate anomalies in comparison to the widely adopted traditional Autoencoder, using a tailored, OE-based loss function. We evaluate oAE in FedOE and demonstrate its ability to generalize to zero-day attacks, with just 50 labeled attack flows per edge server. The results show that oAE achieves a high F1-score for most DDoS attacks, outclassing its non-OE counterpart.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"4002-4015\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3224896\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3224896","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Spotting Anomalies at the Edge: Outlier Exposure-Based Cross-Silo Federated Learning for DDoS Detection
Distributed Denial-of-Service (DDoS) attacks are expected to continue plaguing service availability in emerging networks which rely on distributed edge clouds to offer critical, latency-sensitive applications. However, edge servers increase the network attack surface, which is exacerbated with the massive number of connected Internet of Things (IoT) devices that can be weaponized to launch DDoS attacks. Therefore, it is crucial to detect DDoS attacks early, i.e., at the network edge. In this paper, we empower the network edge with intelligent DDoS detection by learning from similarities between different data and DDoS attacks available across the edge servers. To this end, we develop a novel Outlier Exposure (OE)-enabled cross-silo Federated Learning framework, namely FedOE. FedOE enables distributed training of OE-based ML models using a limited number of labeled outliers (i.e., attack flows) experienced at edge servers. We propose a novel OE-based Autoencoder (oAE) that can better discriminate anomalies in comparison to the widely adopted traditional Autoencoder, using a tailored, OE-based loss function. We evaluate oAE in FedOE and demonstrate its ability to generalize to zero-day attacks, with just 50 labeled attack flows per edge server. The results show that oAE achieves a high F1-score for most DDoS attacks, outclassing its non-OE counterpart.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.