{"title":"有限半群同构问题的一般复杂性","authors":"A. Rybalov","doi":"10.17223/20710410/51/6","DOIUrl":null,"url":null,"abstract":"Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON GENERIC COMPLEXITY OF THE ISOMORPHISM PROBLEM FOR FINITE SEMIGROUPS\",\"authors\":\"A. Rybalov\",\"doi\":\"10.17223/20710410/51/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/20710410/51/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/51/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
ON GENERIC COMPLEXITY OF THE ISOMORPHISM PROBLEM FOR FINITE SEMIGROUPS
Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.
期刊介绍:
The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]