{"title":"纳米结构的有效热导率研究进展","authors":"G. Lebon, H. Machrafi","doi":"10.1478/AAPP.97S1A14","DOIUrl":null,"url":null,"abstract":"We present a synthesis of recent results on thermal heat conductivity in nano-composites and nano-structures. The model is a mixt of the Effective Medium Approximation (EMA) and Extended Irreversible Thermodynamics (EXIT). The latter is particularly well adapted to the description of small scaled systems and will be used to derive the expression of the thermal conductivity of nanoparticles. The model is applied to spherical, cylindrical (nanowires) and porous nanoparticles, respectively, being embedded in host media, like polymeric matrices and semi-conductors. Good agreement is observed with other models, experimental data and Monte-Carlo simulations.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective thermal conductivity of nanostructures: a review\",\"authors\":\"G. Lebon, H. Machrafi\",\"doi\":\"10.1478/AAPP.97S1A14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a synthesis of recent results on thermal heat conductivity in nano-composites and nano-structures. The model is a mixt of the Effective Medium Approximation (EMA) and Extended Irreversible Thermodynamics (EXIT). The latter is particularly well adapted to the description of small scaled systems and will be used to derive the expression of the thermal conductivity of nanoparticles. The model is applied to spherical, cylindrical (nanowires) and porous nanoparticles, respectively, being embedded in host media, like polymeric matrices and semi-conductors. Good agreement is observed with other models, experimental data and Monte-Carlo simulations.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.97S1A14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S1A14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effective thermal conductivity of nanostructures: a review
We present a synthesis of recent results on thermal heat conductivity in nano-composites and nano-structures. The model is a mixt of the Effective Medium Approximation (EMA) and Extended Irreversible Thermodynamics (EXIT). The latter is particularly well adapted to the description of small scaled systems and will be used to derive the expression of the thermal conductivity of nanoparticles. The model is applied to spherical, cylindrical (nanowires) and porous nanoparticles, respectively, being embedded in host media, like polymeric matrices and semi-conductors. Good agreement is observed with other models, experimental data and Monte-Carlo simulations.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.