Omar Llanes Cárdenas, Lorenzo Cervantes Arce, Gabriel Eduardo González González
{"title":"墨西哥西北部锡那罗亚州最高极端温度指标的计算","authors":"Omar Llanes Cárdenas, Lorenzo Cervantes Arce, Gabriel Eduardo González González","doi":"10.15446/esrj.v27n1.99036","DOIUrl":null,"url":null,"abstract":"\n\n\n\nOne of the climate problems that causes the most environmental impact worldwide is the trend of increasing occurrence of events of maximum extreme temperature, signaled by indicators such as hot extremes (HE) and maximum maximorum (highest maximum) temperature (MmT). These events can cause conditions ranging from severe droughts to heat stroke, which can cause death in any population. Indicators of maximum extreme temperature in one of the most important agricultural areas in northwestern Mexico were calculated based on significant trends (ST) and adjusted return periods. To calculate the trends of the maximum extreme temperature, frequency (FR), annual average duration (AAD), annual daily duration (ADD), intensity (IN) of HE, and MmT, the Mann-Kendall and Sen’s slope tests were applied to data obtained for 19 weather stations from the CLImate COMputing database for the period 1982–2014. Adjusted return periods (ARP) were calculated for each indicator of maximum extreme temperature by fitting a probability distribution function. For the study area, the ST and maximum extreme temperature shows a prevailing cooling trend. This can be deduced by observing the proportion of negative ST compared with positive ST. The highest positive magnitudes of ST were recorded at stations CUL (FR = 3.44 HE dec-1), GUT (AAD = 6.15 day HE-1 dec-1 and IN = 13.62 °C dec-1), IXP (ADD = 35.00 day dec-1) and POT (MmT = 2.50 °C day-1 dec-1). For ARP, the estimate of the average occurrence frequency of extreme events per100 years are FR = 6.11 HE dec-1 (1 time), AAD = 6.64 day HE-1 dec-1 (4 times), ADD = 38.68 day dec-1 (1 time), IN = 39.09 °C dec-1 (6 times) and MmT = 41.95 °C day-1 dec-1 (1 time). These findings are of key importance for the economic sectors related to agricultural production in the state known, at least to date, as “the breadbasket of Mexico” (Sinaloa). The results will help to develop adaptation/prevention measures before the coming socioeconomic and hydrological disasters.\n\n\n\n","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of indicators of maximum extreme temperature in Sinaloa state, northwestern Mexico\",\"authors\":\"Omar Llanes Cárdenas, Lorenzo Cervantes Arce, Gabriel Eduardo González González\",\"doi\":\"10.15446/esrj.v27n1.99036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nOne of the climate problems that causes the most environmental impact worldwide is the trend of increasing occurrence of events of maximum extreme temperature, signaled by indicators such as hot extremes (HE) and maximum maximorum (highest maximum) temperature (MmT). These events can cause conditions ranging from severe droughts to heat stroke, which can cause death in any population. Indicators of maximum extreme temperature in one of the most important agricultural areas in northwestern Mexico were calculated based on significant trends (ST) and adjusted return periods. To calculate the trends of the maximum extreme temperature, frequency (FR), annual average duration (AAD), annual daily duration (ADD), intensity (IN) of HE, and MmT, the Mann-Kendall and Sen’s slope tests were applied to data obtained for 19 weather stations from the CLImate COMputing database for the period 1982–2014. Adjusted return periods (ARP) were calculated for each indicator of maximum extreme temperature by fitting a probability distribution function. For the study area, the ST and maximum extreme temperature shows a prevailing cooling trend. This can be deduced by observing the proportion of negative ST compared with positive ST. The highest positive magnitudes of ST were recorded at stations CUL (FR = 3.44 HE dec-1), GUT (AAD = 6.15 day HE-1 dec-1 and IN = 13.62 °C dec-1), IXP (ADD = 35.00 day dec-1) and POT (MmT = 2.50 °C day-1 dec-1). For ARP, the estimate of the average occurrence frequency of extreme events per100 years are FR = 6.11 HE dec-1 (1 time), AAD = 6.64 day HE-1 dec-1 (4 times), ADD = 38.68 day dec-1 (1 time), IN = 39.09 °C dec-1 (6 times) and MmT = 41.95 °C day-1 dec-1 (1 time). These findings are of key importance for the economic sectors related to agricultural production in the state known, at least to date, as “the breadbasket of Mexico” (Sinaloa). The results will help to develop adaptation/prevention measures before the coming socioeconomic and hydrological disasters.\\n\\n\\n\\n\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v27n1.99036\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v27n1.99036","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Calculation of indicators of maximum extreme temperature in Sinaloa state, northwestern Mexico
One of the climate problems that causes the most environmental impact worldwide is the trend of increasing occurrence of events of maximum extreme temperature, signaled by indicators such as hot extremes (HE) and maximum maximorum (highest maximum) temperature (MmT). These events can cause conditions ranging from severe droughts to heat stroke, which can cause death in any population. Indicators of maximum extreme temperature in one of the most important agricultural areas in northwestern Mexico were calculated based on significant trends (ST) and adjusted return periods. To calculate the trends of the maximum extreme temperature, frequency (FR), annual average duration (AAD), annual daily duration (ADD), intensity (IN) of HE, and MmT, the Mann-Kendall and Sen’s slope tests were applied to data obtained for 19 weather stations from the CLImate COMputing database for the period 1982–2014. Adjusted return periods (ARP) were calculated for each indicator of maximum extreme temperature by fitting a probability distribution function. For the study area, the ST and maximum extreme temperature shows a prevailing cooling trend. This can be deduced by observing the proportion of negative ST compared with positive ST. The highest positive magnitudes of ST were recorded at stations CUL (FR = 3.44 HE dec-1), GUT (AAD = 6.15 day HE-1 dec-1 and IN = 13.62 °C dec-1), IXP (ADD = 35.00 day dec-1) and POT (MmT = 2.50 °C day-1 dec-1). For ARP, the estimate of the average occurrence frequency of extreme events per100 years are FR = 6.11 HE dec-1 (1 time), AAD = 6.64 day HE-1 dec-1 (4 times), ADD = 38.68 day dec-1 (1 time), IN = 39.09 °C dec-1 (6 times) and MmT = 41.95 °C day-1 dec-1 (1 time). These findings are of key importance for the economic sectors related to agricultural production in the state known, at least to date, as “the breadbasket of Mexico” (Sinaloa). The results will help to develop adaptation/prevention measures before the coming socioeconomic and hydrological disasters.
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.