{"title":"对撞机上的暗物质搜索","authors":"A. Boveia, C. Doglioni","doi":"10.1146/annurev-nucl-101917-021008","DOIUrl":null,"url":null,"abstract":"Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"1 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-nucl-101917-021008","citationCount":"116","resultStr":"{\"title\":\"Dark Matter Searches at Colliders\",\"authors\":\"A. Boveia, C. Doglioni\",\"doi\":\"10.1146/annurev-nucl-101917-021008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-nucl-101917-021008\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-101917-021008\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101917-021008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.