利用氦-4、氚、碳-14等水文地球化学证据评价地下水年龄分布:以比利时新近系含水层为例

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2022-12-01 DOI:10.1016/j.hydroa.2022.100132
Alberto Casillas-Trasvina , Bart Rogiers , Koen Beerten , Joonas Pärn , Laurent Wouters , Kristine Walraevens
{"title":"利用氦-4、氚、碳-14等水文地球化学证据评价地下水年龄分布:以比利时新近系含水层为例","authors":"Alberto Casillas-Trasvina ,&nbsp;Bart Rogiers ,&nbsp;Koen Beerten ,&nbsp;Joonas Pärn ,&nbsp;Laurent Wouters ,&nbsp;Kristine Walraevens","doi":"10.1016/j.hydroa.2022.100132","DOIUrl":null,"url":null,"abstract":"<div><p>Apparent groundwater age dating has been proven useful and robust in understanding water origin and mixing processes, particularly when multiple tracers are considered. However, even though now extensively used, the age tracers have not been widely applied in the general practice of flow and transport model calibration. A multi tracer-study was carried out in the Neogene aquifer in Flanders to quantify the apparent age and construct a joint interpretation for the delineation of different groundwater flow systems. This understanding is critical as part of the safety and feasibility studies for the underlying Boom Clay Formation that has been considered as a potential host rock for the geological disposal of radioactive waste. In this study, we combine evidence from tritium/helium-3 (<sup>3</sup>H/<sup>3</sup>He), helium-4 (<sup>4</sup>He) and radiocarbon (<sup>14</sup>C) dating as well as stable isotopic (δ<sup>18</sup>O, δ<sup>2</sup>H) and hydrochemical signatures in combination with particle tracking-based age distributions from the 3D groundwater flow model. The results of the study indicate that mixing of groundwater with young and old fractions occurs predominantly in the central part of the aquifer which is made evident by the coexistence of <sup>3</sup>H (pre and post-bomb pulse Era), <sup>14</sup>C and <sup>4</sup>He in several groundwater samples. The mixing between water of different origin is also supported by the sampled stable isotopic and hydrochemical composition of groundwater. Particle tracking residence time results show an acceptable agreement with apparent ages derived from age tracers for young (≤100 years) and old (&gt;1000 years) groundwater. Groundwater with ages between 100 and 1000 years is likely a mixture of water with young/old fractions and shows the strongest discrepancies between advective model ages and age tracer based apparent ages. On the basis of our findings, we distinguish between three groundwater flow systems in the Neogene aquifer: i) a shallow/local flow system, with groundwater originating from modern meteoric water; ii) a deep/semi-regional flow system, characterized by old groundwater where the presence of <sup>4</sup>He<sub>rad</sub> is significant; iii) a mixed zone of groundwater flow where the recently infiltrated meteoric water mixes with discharging old groundwater. These results have helped us to refine previously proposed conceptual models for the study area and will in the end reduce uncertainties relevant to the potential future geological disposal of radioactive waste.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"17 ","pages":"Article 100132"},"PeriodicalIF":3.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000141/pdfft?md5=590d06b201e19f4288a06094e0c20269&pid=1-s2.0-S2589915522000141-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Using helium-4, tritium, carbon-14 and other hydrogeochemical evidence to evaluate the groundwater age distribution: The case of the Neogene aquifer, Belgium\",\"authors\":\"Alberto Casillas-Trasvina ,&nbsp;Bart Rogiers ,&nbsp;Koen Beerten ,&nbsp;Joonas Pärn ,&nbsp;Laurent Wouters ,&nbsp;Kristine Walraevens\",\"doi\":\"10.1016/j.hydroa.2022.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Apparent groundwater age dating has been proven useful and robust in understanding water origin and mixing processes, particularly when multiple tracers are considered. However, even though now extensively used, the age tracers have not been widely applied in the general practice of flow and transport model calibration. A multi tracer-study was carried out in the Neogene aquifer in Flanders to quantify the apparent age and construct a joint interpretation for the delineation of different groundwater flow systems. This understanding is critical as part of the safety and feasibility studies for the underlying Boom Clay Formation that has been considered as a potential host rock for the geological disposal of radioactive waste. In this study, we combine evidence from tritium/helium-3 (<sup>3</sup>H/<sup>3</sup>He), helium-4 (<sup>4</sup>He) and radiocarbon (<sup>14</sup>C) dating as well as stable isotopic (δ<sup>18</sup>O, δ<sup>2</sup>H) and hydrochemical signatures in combination with particle tracking-based age distributions from the 3D groundwater flow model. The results of the study indicate that mixing of groundwater with young and old fractions occurs predominantly in the central part of the aquifer which is made evident by the coexistence of <sup>3</sup>H (pre and post-bomb pulse Era), <sup>14</sup>C and <sup>4</sup>He in several groundwater samples. The mixing between water of different origin is also supported by the sampled stable isotopic and hydrochemical composition of groundwater. Particle tracking residence time results show an acceptable agreement with apparent ages derived from age tracers for young (≤100 years) and old (&gt;1000 years) groundwater. Groundwater with ages between 100 and 1000 years is likely a mixture of water with young/old fractions and shows the strongest discrepancies between advective model ages and age tracer based apparent ages. On the basis of our findings, we distinguish between three groundwater flow systems in the Neogene aquifer: i) a shallow/local flow system, with groundwater originating from modern meteoric water; ii) a deep/semi-regional flow system, characterized by old groundwater where the presence of <sup>4</sup>He<sub>rad</sub> is significant; iii) a mixed zone of groundwater flow where the recently infiltrated meteoric water mixes with discharging old groundwater. These results have helped us to refine previously proposed conceptual models for the study area and will in the end reduce uncertainties relevant to the potential future geological disposal of radioactive waste.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"17 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589915522000141/pdfft?md5=590d06b201e19f4288a06094e0c20269&pid=1-s2.0-S2589915522000141-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915522000141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915522000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

地表地下水年龄测年已被证明在了解水源和混合过程方面是有用和可靠的,特别是在考虑多种示踪剂的情况下。然而,尽管年龄示踪剂现在被广泛使用,但在流动和输运模型校准的一般实践中尚未得到广泛应用。在佛兰德斯新近系含水层中进行了多示踪研究,以量化表观年龄并构建不同地下水流动系统圈定的联合解释。这种理解对于井架粘土地层的安全性和可行性研究是至关重要的,井架粘土地层被认为是放射性废物地质处置的潜在宿主岩石。在这项研究中,我们结合了氚/氦-3 (3H/3He),氦-4 (4He)和放射性碳(14C)定年以及稳定同位素(δ18O, δ2H)和水化学特征的证据,并结合了基于颗粒跟踪的三维地下水流动模型的年龄分布。研究结果表明,地下水与年轻组分和老组分的混合主要发生在含水层的中部,这从几个地下水样品中3H(爆炸前和爆炸后脉冲时代)、14C和4He的共存可见一斑。不同来源的水之间的混合也得到了地下水稳定同位素和水化学组成的支持。粒子跟踪停留时间的结果与年龄示踪剂得出的年轻(≤100年)和年老(>1000年)地下水的表观年龄具有可接受的一致性。年龄在100年至1000年之间的地下水可能是年轻/年老组分水的混合物,并且在平流模式年龄和基于年龄示踪剂的表观年龄之间显示出最大的差异。在此基础上,我们区分了新近系含水层的三种地下水流动系统:1)浅层/局部流动系统,地下水起源于现代大气水;ii)深层/半区域流动系统,以4Herad显著存在的旧地下水为特征;Iii)地下水流动的混合区,在这里,最近渗入的大气水与排出的旧地下水混合在一起。这些结果有助于我们完善先前提出的研究区域的概念模型,并最终减少与未来潜在的放射性废物地质处置有关的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using helium-4, tritium, carbon-14 and other hydrogeochemical evidence to evaluate the groundwater age distribution: The case of the Neogene aquifer, Belgium

Apparent groundwater age dating has been proven useful and robust in understanding water origin and mixing processes, particularly when multiple tracers are considered. However, even though now extensively used, the age tracers have not been widely applied in the general practice of flow and transport model calibration. A multi tracer-study was carried out in the Neogene aquifer in Flanders to quantify the apparent age and construct a joint interpretation for the delineation of different groundwater flow systems. This understanding is critical as part of the safety and feasibility studies for the underlying Boom Clay Formation that has been considered as a potential host rock for the geological disposal of radioactive waste. In this study, we combine evidence from tritium/helium-3 (3H/3He), helium-4 (4He) and radiocarbon (14C) dating as well as stable isotopic (δ18O, δ2H) and hydrochemical signatures in combination with particle tracking-based age distributions from the 3D groundwater flow model. The results of the study indicate that mixing of groundwater with young and old fractions occurs predominantly in the central part of the aquifer which is made evident by the coexistence of 3H (pre and post-bomb pulse Era), 14C and 4He in several groundwater samples. The mixing between water of different origin is also supported by the sampled stable isotopic and hydrochemical composition of groundwater. Particle tracking residence time results show an acceptable agreement with apparent ages derived from age tracers for young (≤100 years) and old (>1000 years) groundwater. Groundwater with ages between 100 and 1000 years is likely a mixture of water with young/old fractions and shows the strongest discrepancies between advective model ages and age tracer based apparent ages. On the basis of our findings, we distinguish between three groundwater flow systems in the Neogene aquifer: i) a shallow/local flow system, with groundwater originating from modern meteoric water; ii) a deep/semi-regional flow system, characterized by old groundwater where the presence of 4Herad is significant; iii) a mixed zone of groundwater flow where the recently infiltrated meteoric water mixes with discharging old groundwater. These results have helped us to refine previously proposed conceptual models for the study area and will in the end reduce uncertainties relevant to the potential future geological disposal of radioactive waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Association of climate variability modes with concurrent droughts and heatwaves in India Climatology of extreme precipitation spells induced by cloudburst-like events during the Indian Summer Monsoon AutoVL: Automated streamflow separation for changing catchments and climate impact analysis Practical application of time-lapse camera imagery to develop water-level data for three hydrologic monitoring sites in Wisconsin during water year 2020 Hydrograph and recession flows simulations using deep learning: Watershed uniqueness and objective functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1