{"title":"基于6G网络功率分配技术的VL-NOMA信道状态信息条件研究","authors":"C. E. Ngene, P. Thakur, G. Singh","doi":"10.1515/joc-2023-0064","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the channel state information (CSI) conditions in visible light non-orthogonal multiple access (VL-NOMA) using the power allocation technique (PA) for a sixth-generation (6G) network. One light-emitting diode (LED) is used as a carrier to transmit the signal to three-user-positioned at certain distances. The challenge of allocating power to the system is solved using the PA technique. The PA technique uses to assign signal powers to the three users. The VL-NOMA channel with CSI symbols is synchronized for the performance of signal propagation. We deployed perfect CSI, imperfect CSI, and partial CSI to coordinate the signal enhancement that results in an improved data rate, higher channel capacity, and improved signal-to-noise ratio (SNR). The synchronized system model guarantees successful signal enhancement where perfect CSI performs better than partial CSI and imperfect CSI. We have enabled interference plus noise to see how the system behaves. We notice low channel capacity region, low data rate performance, etc. Hence, we analyse the PA to determine the outage probability effect on the signal.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of channel state information conditions in VL-NOMA using power allocation technique for 6G network\",\"authors\":\"C. E. Ngene, P. Thakur, G. Singh\",\"doi\":\"10.1515/joc-2023-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper investigates the channel state information (CSI) conditions in visible light non-orthogonal multiple access (VL-NOMA) using the power allocation technique (PA) for a sixth-generation (6G) network. One light-emitting diode (LED) is used as a carrier to transmit the signal to three-user-positioned at certain distances. The challenge of allocating power to the system is solved using the PA technique. The PA technique uses to assign signal powers to the three users. The VL-NOMA channel with CSI symbols is synchronized for the performance of signal propagation. We deployed perfect CSI, imperfect CSI, and partial CSI to coordinate the signal enhancement that results in an improved data rate, higher channel capacity, and improved signal-to-noise ratio (SNR). The synchronized system model guarantees successful signal enhancement where perfect CSI performs better than partial CSI and imperfect CSI. We have enabled interference plus noise to see how the system behaves. We notice low channel capacity region, low data rate performance, etc. Hence, we analyse the PA to determine the outage probability effect on the signal.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Investigation of channel state information conditions in VL-NOMA using power allocation technique for 6G network
Abstract This paper investigates the channel state information (CSI) conditions in visible light non-orthogonal multiple access (VL-NOMA) using the power allocation technique (PA) for a sixth-generation (6G) network. One light-emitting diode (LED) is used as a carrier to transmit the signal to three-user-positioned at certain distances. The challenge of allocating power to the system is solved using the PA technique. The PA technique uses to assign signal powers to the three users. The VL-NOMA channel with CSI symbols is synchronized for the performance of signal propagation. We deployed perfect CSI, imperfect CSI, and partial CSI to coordinate the signal enhancement that results in an improved data rate, higher channel capacity, and improved signal-to-noise ratio (SNR). The synchronized system model guarantees successful signal enhancement where perfect CSI performs better than partial CSI and imperfect CSI. We have enabled interference plus noise to see how the system behaves. We notice low channel capacity region, low data rate performance, etc. Hence, we analyse the PA to determine the outage probability effect on the signal.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications