Q. Feng, Qun Chang, H. Jia, Yi Wu, L. Dai, Yuguang Cao
{"title":"管道环焊缝断裂行为的数值模拟方法研究","authors":"Q. Feng, Qun Chang, H. Jia, Yi Wu, L. Dai, Yuguang Cao","doi":"10.1115/1.4062461","DOIUrl":null,"url":null,"abstract":"\n The failure accidents in girth weld of pipelines occur frequently due to the combination of internal defects and external loads., However, the research on the fracture behavior of girth weld defects is relatively poor at present. To solve this problem, the cracking behavior and strain evolution law of the inner wall defects of the pipe girth weld is studied in combination with full-scale tests (FST). The constitutive and GTN damage parameters of the pipe base metal zone, weld zone and heat-affected zone (HAZ) are calibrated through the small punch test (SPT) and single edge notch bending (SENB) test. On this basis, the welded pipe model with inner wall defects is established, and a numerical simulation method for dynamic fracture behavior based on damage mechanics is formed. The numerical simulation method is verified by FST data and theoretical calculation. The results show that the numerical results are consistent with the FST and theoretical calculation in the elastic stage, plastic stage and fracture stage, and the error is within 10%. The novel numerical simulation method is provided as a means for the fracture behavior research of pipeline girth weld.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Numerical Simulation Method of Fracture Behavior of Pipeline Girth Weld\",\"authors\":\"Q. Feng, Qun Chang, H. Jia, Yi Wu, L. Dai, Yuguang Cao\",\"doi\":\"10.1115/1.4062461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The failure accidents in girth weld of pipelines occur frequently due to the combination of internal defects and external loads., However, the research on the fracture behavior of girth weld defects is relatively poor at present. To solve this problem, the cracking behavior and strain evolution law of the inner wall defects of the pipe girth weld is studied in combination with full-scale tests (FST). The constitutive and GTN damage parameters of the pipe base metal zone, weld zone and heat-affected zone (HAZ) are calibrated through the small punch test (SPT) and single edge notch bending (SENB) test. On this basis, the welded pipe model with inner wall defects is established, and a numerical simulation method for dynamic fracture behavior based on damage mechanics is formed. The numerical simulation method is verified by FST data and theoretical calculation. The results show that the numerical results are consistent with the FST and theoretical calculation in the elastic stage, plastic stage and fracture stage, and the error is within 10%. The novel numerical simulation method is provided as a means for the fracture behavior research of pipeline girth weld.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062461\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062461","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on Numerical Simulation Method of Fracture Behavior of Pipeline Girth Weld
The failure accidents in girth weld of pipelines occur frequently due to the combination of internal defects and external loads., However, the research on the fracture behavior of girth weld defects is relatively poor at present. To solve this problem, the cracking behavior and strain evolution law of the inner wall defects of the pipe girth weld is studied in combination with full-scale tests (FST). The constitutive and GTN damage parameters of the pipe base metal zone, weld zone and heat-affected zone (HAZ) are calibrated through the small punch test (SPT) and single edge notch bending (SENB) test. On this basis, the welded pipe model with inner wall defects is established, and a numerical simulation method for dynamic fracture behavior based on damage mechanics is formed. The numerical simulation method is verified by FST data and theoretical calculation. The results show that the numerical results are consistent with the FST and theoretical calculation in the elastic stage, plastic stage and fracture stage, and the error is within 10%. The novel numerical simulation method is provided as a means for the fracture behavior research of pipeline girth weld.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.