评论:解决不安:一个推理模型的视角

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2021-05-01 DOI:10.1214/21-STS765B
Chuanhai Liu, Ryan Martin
{"title":"评论:解决不安:一个推理模型的视角","authors":"Chuanhai Liu, Ryan Martin","doi":"10.1214/21-STS765B","DOIUrl":null,"url":null,"abstract":"Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Comment: Settle the Unsettling: An Inferential Models Perspective\",\"authors\":\"Chuanhai Liu, Ryan Martin\",\"doi\":\"10.1214/21-STS765B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-STS765B\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-STS765B","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

在这里,我们证明了推理模型(IM)框架与龚和孟所展示的不可靠的更新规则不同,它提供了有效的推断/预测,同时不易受到确定性损失的影响。从这个意义上说,IM框架解决了龚和孟所说的“令人不安”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comment: Settle the Unsettling: An Inferential Models Perspective
Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as “unsettling.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
Variable Selection Using Bayesian Additive Regression Trees. Defining Replicability of Prediction Rules Tracking Truth Through Measurement and the Spyglass of Statistics Replicability Across Multiple Studies Game-Theoretic Statistics and Safe Anytime-Valid Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1