{"title":"FFF工艺参数的分析与优化以提高3D打印PLA产品的力学性能","authors":"Tesfaye Mengesha Medibew, A. Ali","doi":"10.1515/ipp-2022-4237","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the combined effects of fused filament fabrication (FFF) process parameters on the mechanical properties of 3D printed PLA products have been determined by focusing on the tensile strength at R 2 (97.29%). ASTM D638 test standard is used for the preparation of specimens for tensile tests. The optimization technique has been used to determine the optimal combinations of FFF process parameters for the validation of experimental tensile tests and computational fluid dynamics (CFD) simulations. From the results obtained the optimum cooling fan speed of 79.3%, extrusion temperature of 214.4 °C, printing speed of 75.9 mm/s, raster width of 0.4814 mm, and shell number 5 were determined with a 2.266% error of the tensile strength (45.06 MPa). SEM morphology examination shows that the fabricated part cooled at 80% cooling fan speed illustrates good inter-layer bond strength which is also confirmed by CFD temperature distributions analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis and optimization of FFF process parameters to enhance the mechanical properties of 3D printed PLA products\",\"authors\":\"Tesfaye Mengesha Medibew, A. Ali\",\"doi\":\"10.1515/ipp-2022-4237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the combined effects of fused filament fabrication (FFF) process parameters on the mechanical properties of 3D printed PLA products have been determined by focusing on the tensile strength at R 2 (97.29%). ASTM D638 test standard is used for the preparation of specimens for tensile tests. The optimization technique has been used to determine the optimal combinations of FFF process parameters for the validation of experimental tensile tests and computational fluid dynamics (CFD) simulations. From the results obtained the optimum cooling fan speed of 79.3%, extrusion temperature of 214.4 °C, printing speed of 75.9 mm/s, raster width of 0.4814 mm, and shell number 5 were determined with a 2.266% error of the tensile strength (45.06 MPa). SEM morphology examination shows that the fabricated part cooled at 80% cooling fan speed illustrates good inter-layer bond strength which is also confirmed by CFD temperature distributions analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4237\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis and optimization of FFF process parameters to enhance the mechanical properties of 3D printed PLA products
Abstract In this work, the combined effects of fused filament fabrication (FFF) process parameters on the mechanical properties of 3D printed PLA products have been determined by focusing on the tensile strength at R 2 (97.29%). ASTM D638 test standard is used for the preparation of specimens for tensile tests. The optimization technique has been used to determine the optimal combinations of FFF process parameters for the validation of experimental tensile tests and computational fluid dynamics (CFD) simulations. From the results obtained the optimum cooling fan speed of 79.3%, extrusion temperature of 214.4 °C, printing speed of 75.9 mm/s, raster width of 0.4814 mm, and shell number 5 were determined with a 2.266% error of the tensile strength (45.06 MPa). SEM morphology examination shows that the fabricated part cooled at 80% cooling fan speed illustrates good inter-layer bond strength which is also confirmed by CFD temperature distributions analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.