纳米颗粒给药结核病治疗的最新趋势

Pachouri Chandni, P. Bharat, Shroti Sandhya, S. Sandeep, P. Archna
{"title":"纳米颗粒给药结核病治疗的最新趋势","authors":"Pachouri Chandni, P. Bharat, Shroti Sandhya, S. Sandeep, P. Archna","doi":"10.23937/2378-3664.1410035","DOIUrl":null,"url":null,"abstract":"Current treatment therapeutic approach for tuberculosis is the administration of first line drugs in the form of tablets and capsules for 4-6 months however; this approach leads to sever adverse effect. Therefore, present study was designed to achieving local and sustained targeting of ant tuberculosis drugs in order to reduce dose n frequency. Nanoparticles (NPs) have been found to be potential targeted and controlled release drug delivery systems. Various drugs can be loaded in the NPs to achieve targeted delivery. Nanoparticles of antituberculosis drugs are generally prepared by using chitosan and PLGA polymer. Nanoparticles of Chitosan being biodegradable, biocompatible, less toxic and easy to prepare, are an effective and potential tool for drug delivery. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. In recent years, there have been a plethora of nanoengineering approaches for the development of poly (lactide-co-glycolide) (PLGA) nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles. Relevant information might be helpful to those who prepare and develop nanoparticles of ant tuberculosis drugs that meet their specific demands.","PeriodicalId":91094,"journal":{"name":"International journal of medical nano research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Trends in Nanoparticles Based Drug Delivery for Tuberculosis Treatment\",\"authors\":\"Pachouri Chandni, P. Bharat, Shroti Sandhya, S. Sandeep, P. Archna\",\"doi\":\"10.23937/2378-3664.1410035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current treatment therapeutic approach for tuberculosis is the administration of first line drugs in the form of tablets and capsules for 4-6 months however; this approach leads to sever adverse effect. Therefore, present study was designed to achieving local and sustained targeting of ant tuberculosis drugs in order to reduce dose n frequency. Nanoparticles (NPs) have been found to be potential targeted and controlled release drug delivery systems. Various drugs can be loaded in the NPs to achieve targeted delivery. Nanoparticles of antituberculosis drugs are generally prepared by using chitosan and PLGA polymer. Nanoparticles of Chitosan being biodegradable, biocompatible, less toxic and easy to prepare, are an effective and potential tool for drug delivery. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. In recent years, there have been a plethora of nanoengineering approaches for the development of poly (lactide-co-glycolide) (PLGA) nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles. Relevant information might be helpful to those who prepare and develop nanoparticles of ant tuberculosis drugs that meet their specific demands.\",\"PeriodicalId\":91094,\"journal\":{\"name\":\"International journal of medical nano research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medical nano research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23937/2378-3664.1410035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medical nano research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23937/2378-3664.1410035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

然而,目前结核病的治疗方法是以片剂和胶囊形式给予一线药物4-6个月;这种做法会导致严重的不良影响。因此,本研究旨在实现抗结核药物的局部和持续靶向,以减少剂量和频率。纳米颗粒(NPs)是一种潜在的靶向和控释药物递送系统。NPs中可装载多种药物,实现靶向给药。抗结核药物的纳米颗粒一般是由壳聚糖和聚乳酸聚合物制备的。壳聚糖纳米颗粒具有可生物降解、生物相容性好、毒性小、制备简单等优点,是一种有效的、有潜力的药物递送工具。纳米胶囊技术的选择应考虑药物性质、纳米颗粒质量、规模化可行性、制造成本、人员安全、环境影响、废物处理等因素。近年来,已经有了大量的纳米工程方法来开发聚乳酸-羟基乙酸酯(PLGA)纳米颗粒载体体系。然而,忽略了制备和表征plga基纳米颗粒的多方面问题。相关信息可能对那些制备和开发符合其特定需求的抗结核药物纳米颗粒的人有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Trends in Nanoparticles Based Drug Delivery for Tuberculosis Treatment
Current treatment therapeutic approach for tuberculosis is the administration of first line drugs in the form of tablets and capsules for 4-6 months however; this approach leads to sever adverse effect. Therefore, present study was designed to achieving local and sustained targeting of ant tuberculosis drugs in order to reduce dose n frequency. Nanoparticles (NPs) have been found to be potential targeted and controlled release drug delivery systems. Various drugs can be loaded in the NPs to achieve targeted delivery. Nanoparticles of antituberculosis drugs are generally prepared by using chitosan and PLGA polymer. Nanoparticles of Chitosan being biodegradable, biocompatible, less toxic and easy to prepare, are an effective and potential tool for drug delivery. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. In recent years, there have been a plethora of nanoengineering approaches for the development of poly (lactide-co-glycolide) (PLGA) nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles. Relevant information might be helpful to those who prepare and develop nanoparticles of ant tuberculosis drugs that meet their specific demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Mesenchymal Stem Cell in Combination with Self-Assembled Functional Nanopeptide Gel to Promote Angiogenesis Possible Effect of Nano Characterization of COVID-19 on Infection and Causing Disease Therapeutic Application of Nanomaterials in the Management of Health Care: 'An Updated Review' Encapsulation of Alendronate in Chitosan based Polymeric Nanoparticles for Effective Management of Osteoporosis – Development to Release Kinetic Study Recent Trends in Nanoparticles Based Drug Delivery for Tuberculosis Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1