Huizhang Yang, Chengzhi Chen, Shengyao Chen, Feng Xi, Zhong Liu
{"title":"基于低秩和稀疏联合优化的干涉数据扩展场景SAR RFI抑制","authors":"Huizhang Yang, Chengzhi Chen, Shengyao Chen, Feng Xi, Zhong Liu","doi":"10.1109/lgrs.2020.3011547","DOIUrl":null,"url":null,"abstract":"Radio frequency interference (RFI) can significantly pollute synthetic aperture radar (SAR) data and images, which is also harmful to SAR interferometry (InSAR) for retrieving elevational information. To address this issue, in recent years, a class of advanced RFI suppression methods has been proposed based on narrowband properties of RFI and sparsity assumptions of radar echoes or target reflectivity. However, for SAR echoes and the associated scene reflectivity, these assumptions are usually not feasible when the imaged scene is spatially extended. In view of these problems, this study proposes an InSAR-based RFI suppression method for the case of extended scenes. For this task, we combine the RFI-polluted SAR data with RFI-free interferometric data to form an interferometric SAR data pair. We show that such an InSAR data pair embeds an interferogram having the image amplitude multiplying by a complex exponential interferometric phase. We treat the interferogram as a kind of natural image and use discrete Fourier cosine transform (DCT) for its sparse representation. Then combining the DCT-domain sparsity with low-rank modeling of RFI, we retrieve the interferogram and reconstruct the SAR image via joint low-rank and sparse optimization. Numerical simulations show that the proposed method can effectively recover SAR images and interferometric phases from RFI-polluted SAR data.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1976-1980"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SAR RFI Suppression for Extended Scene Using Interferometric Data via Joint Low-Rank and Sparse Optimization\",\"authors\":\"Huizhang Yang, Chengzhi Chen, Shengyao Chen, Feng Xi, Zhong Liu\",\"doi\":\"10.1109/lgrs.2020.3011547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency interference (RFI) can significantly pollute synthetic aperture radar (SAR) data and images, which is also harmful to SAR interferometry (InSAR) for retrieving elevational information. To address this issue, in recent years, a class of advanced RFI suppression methods has been proposed based on narrowband properties of RFI and sparsity assumptions of radar echoes or target reflectivity. However, for SAR echoes and the associated scene reflectivity, these assumptions are usually not feasible when the imaged scene is spatially extended. In view of these problems, this study proposes an InSAR-based RFI suppression method for the case of extended scenes. For this task, we combine the RFI-polluted SAR data with RFI-free interferometric data to form an interferometric SAR data pair. We show that such an InSAR data pair embeds an interferogram having the image amplitude multiplying by a complex exponential interferometric phase. We treat the interferogram as a kind of natural image and use discrete Fourier cosine transform (DCT) for its sparse representation. Then combining the DCT-domain sparsity with low-rank modeling of RFI, we retrieve the interferogram and reconstruct the SAR image via joint low-rank and sparse optimization. Numerical simulations show that the proposed method can effectively recover SAR images and interferometric phases from RFI-polluted SAR data.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"18 1\",\"pages\":\"1976-1980\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2020.3011547\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3011547","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SAR RFI Suppression for Extended Scene Using Interferometric Data via Joint Low-Rank and Sparse Optimization
Radio frequency interference (RFI) can significantly pollute synthetic aperture radar (SAR) data and images, which is also harmful to SAR interferometry (InSAR) for retrieving elevational information. To address this issue, in recent years, a class of advanced RFI suppression methods has been proposed based on narrowband properties of RFI and sparsity assumptions of radar echoes or target reflectivity. However, for SAR echoes and the associated scene reflectivity, these assumptions are usually not feasible when the imaged scene is spatially extended. In view of these problems, this study proposes an InSAR-based RFI suppression method for the case of extended scenes. For this task, we combine the RFI-polluted SAR data with RFI-free interferometric data to form an interferometric SAR data pair. We show that such an InSAR data pair embeds an interferogram having the image amplitude multiplying by a complex exponential interferometric phase. We treat the interferogram as a kind of natural image and use discrete Fourier cosine transform (DCT) for its sparse representation. Then combining the DCT-domain sparsity with low-rank modeling of RFI, we retrieve the interferogram and reconstruct the SAR image via joint low-rank and sparse optimization. Numerical simulations show that the proposed method can effectively recover SAR images and interferometric phases from RFI-polluted SAR data.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.