Pavel Pracný, Jiří Faimon, Dalibor Všianský, Ludvík Kabelka
{"title":"浅岩溶条件下石灰岩溶蚀过程中Mg/Ca比值的演化","authors":"Pavel Pracný, Jiří Faimon, Dalibor Všianský, Ludvík Kabelka","doi":"10.1007/s10498-017-9313-y","DOIUrl":null,"url":null,"abstract":"<p>The Mg/Ca ratios in karst water are generally believed to comprise information on climate, and, being encoded in speleothems, they are utilized as paleoenvironmental proxy. However, the mechanism and dynamic of Mg release from limestone during dissolution is not well understood. A theoretical evolution of the Mg/Ca ratios during limestone dissolution under epikarstic conditions (<i>T</i>?=?10?°C, <span>\\(\\log P_{{{\\text{CO}}_{2} }}\\)</span>?=??1.5) was studied via a dynamic model. The results were compared with (1) the dripwater data set collected in Punkva Caves (Moravian Karst, Czech Republic) during one-year period and (2) the published data from various locations worldwide. The modeling showed that the Mg/Ca ratios are governed by composition of Mg-calcite present in limestone. Two distinct stages in the dissolution dynamics were recognized: (1) an initial congruent dissolution with stoichiometric release of Ca and Mg and, subsequently, (2) an incongruent dissolution demonstrated by the gradual release of Mg with simultaneous Ca decrease via calcite precipitation. Additional identified factors influencing the reaction path and Mg/Ca ratio evolution were the dolomitic component of limestone and the ratio of limestone/solution boundary area to water volume. Finally, the water–rock interaction time controls the resulting Mg/Ca ratio in dripwater determining how far the dissolution proceeds along the reaction path. Thus, the study results indicate that Mg/Ca ratio depends on many factors in addition to climatic variables.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"23 2","pages":"119 - 139"},"PeriodicalIF":1.7000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-017-9313-y","citationCount":"9","resultStr":"{\"title\":\"Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions\",\"authors\":\"Pavel Pracný, Jiří Faimon, Dalibor Všianský, Ludvík Kabelka\",\"doi\":\"10.1007/s10498-017-9313-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Mg/Ca ratios in karst water are generally believed to comprise information on climate, and, being encoded in speleothems, they are utilized as paleoenvironmental proxy. However, the mechanism and dynamic of Mg release from limestone during dissolution is not well understood. A theoretical evolution of the Mg/Ca ratios during limestone dissolution under epikarstic conditions (<i>T</i>?=?10?°C, <span>\\\\(\\\\log P_{{{\\\\text{CO}}_{2} }}\\\\)</span>?=??1.5) was studied via a dynamic model. The results were compared with (1) the dripwater data set collected in Punkva Caves (Moravian Karst, Czech Republic) during one-year period and (2) the published data from various locations worldwide. The modeling showed that the Mg/Ca ratios are governed by composition of Mg-calcite present in limestone. Two distinct stages in the dissolution dynamics were recognized: (1) an initial congruent dissolution with stoichiometric release of Ca and Mg and, subsequently, (2) an incongruent dissolution demonstrated by the gradual release of Mg with simultaneous Ca decrease via calcite precipitation. Additional identified factors influencing the reaction path and Mg/Ca ratio evolution were the dolomitic component of limestone and the ratio of limestone/solution boundary area to water volume. Finally, the water–rock interaction time controls the resulting Mg/Ca ratio in dripwater determining how far the dissolution proceeds along the reaction path. Thus, the study results indicate that Mg/Ca ratio depends on many factors in addition to climatic variables.</p>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"23 2\",\"pages\":\"119 - 139\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10498-017-9313-y\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-017-9313-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-017-9313-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions
The Mg/Ca ratios in karst water are generally believed to comprise information on climate, and, being encoded in speleothems, they are utilized as paleoenvironmental proxy. However, the mechanism and dynamic of Mg release from limestone during dissolution is not well understood. A theoretical evolution of the Mg/Ca ratios during limestone dissolution under epikarstic conditions (T?=?10?°C, \(\log P_{{{\text{CO}}_{2} }}\)?=??1.5) was studied via a dynamic model. The results were compared with (1) the dripwater data set collected in Punkva Caves (Moravian Karst, Czech Republic) during one-year period and (2) the published data from various locations worldwide. The modeling showed that the Mg/Ca ratios are governed by composition of Mg-calcite present in limestone. Two distinct stages in the dissolution dynamics were recognized: (1) an initial congruent dissolution with stoichiometric release of Ca and Mg and, subsequently, (2) an incongruent dissolution demonstrated by the gradual release of Mg with simultaneous Ca decrease via calcite precipitation. Additional identified factors influencing the reaction path and Mg/Ca ratio evolution were the dolomitic component of limestone and the ratio of limestone/solution boundary area to water volume. Finally, the water–rock interaction time controls the resulting Mg/Ca ratio in dripwater determining how far the dissolution proceeds along the reaction path. Thus, the study results indicate that Mg/Ca ratio depends on many factors in addition to climatic variables.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.