深度relu神经网络克服偏积分微分方程的维数诅咒

IF 2 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2021-02-23 DOI:10.1142/s0219530522500129
Lukas Gonon, C. Schwab
{"title":"深度relu神经网络克服偏积分微分方程的维数诅咒","authors":"Lukas Gonon, C. Schwab","doi":"10.1142/s0219530522500129","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\\mathbb{R}^d$, that for any compact $K\\subset \\mathbb{R}^d$, there exist constants $C,{\\mathfrak{p}},{\\mathfrak{q}}>0$ such that for every $\\varepsilon \\in (0,1]$ and for every $d\\in \\mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\\varepsilon$ with DNN size bounded by $Cd^{\\mathfrak{p}}\\varepsilon^{-\\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\\in \\mathbb{N}$ and of $\\varepsilon \\in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations\",\"authors\":\"Lukas Gonon, C. Schwab\",\"doi\":\"10.1142/s0219530522500129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\\\\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\\\\mathbb{R}^d$, that for any compact $K\\\\subset \\\\mathbb{R}^d$, there exist constants $C,{\\\\mathfrak{p}},{\\\\mathfrak{q}}>0$ such that for every $\\\\varepsilon \\\\in (0,1]$ and for every $d\\\\in \\\\mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\\\\varepsilon$ with DNN size bounded by $Cd^{\\\\mathfrak{p}}\\\\varepsilon^{-\\\\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\\\\in \\\\mathbb{N}$ and of $\\\\varepsilon \\\\in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500129\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

证明了具有ReLU激活函数的深度神经网络能够在可能高维的状态空间上表达线性偏积分微分方程(PIDEs)的粘性解。可容许的PIDEs包括高维扩散、平流和纯跳变L\ {e}vy过程的Kolmogorov方程。我们证明了由$\mathbb{R}^d$上的一类跳扩散引起的PIDE,对于任意紧化的$K\子集$ mathbb{R}^d$,存在常数$C,{\mathfrak{p}},{\mathfrak{q}}> $,使得PIDE黏性解的归一化(超过$K$) DNN $L^2$表达式误差的大小为$\varepsilon$, DNN的大小以$Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$为界。特别是,常数$C> $独立于$d\ In \mathbb{N}$和$ varepsilon \ In(0,1]$,并且仅取决于PIDE中的系数和用于量化误差的度量。这表明,ReLU dnn可以打破与马尔可夫跳跃扩散过程相对应的线性可能退化的PIDEs的粘度解的维数诅咒(简称CoD)。作为所采用的技术的结果,我们还得到了一大类与路径相关的泛函的期望可以在没有CoD的情况下表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations
Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\mathbb{R}^d$, that for any compact $K\subset \mathbb{R}^d$, there exist constants $C,{\mathfrak{p}},{\mathfrak{q}}>0$ such that for every $\varepsilon \in (0,1]$ and for every $d\in \mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\varepsilon$ with DNN size bounded by $Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\in \mathbb{N}$ and of $\varepsilon \in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1