{"title":"平面人工磁导体实现CPW馈电的X波段宽带印刷锥形缝隙天线","authors":"H. Malekpoor","doi":"10.7716/aem.v12i1.2087","DOIUrl":null,"url":null,"abstract":"A low-profile printed slot antenna (PSA) backed by broadband planar artificial magnetic conductor (AMC) is introduced in this study. Firstly, a suggested PSA with the radiating tapered slots excited by coplanar-waveguide (CPW) is used to expand the bandwidth in the measured range of 9-11 GHz (S11≤ -10 dB). Then, the suggested planar AMC surface as the ground plane of the antenna is inserted into the PSA to gain improved radiation efficiency. The realized result from the PSA with the 9×9 planar AMC array exhibits -10 dB measured impedance bandwidth from 6.63 to 13.73 GHz (70%). The suggested PSA with AMC compared to the PSA without AMC exhibits a size reduction of 60%, enhanced bandwidth of 50%, and excellent impedance matching with a minimum value of almost -40 dB. The novel AMC unit cell is realized to operate at 10.14 GHz with an AMC bandwidth of 8-12.35 GHz (43.1%) for X-band operation. Besides, by loading a periodic AMC unit cells into PSA, a high gain of more than 11 dBi with uni-directional radiation patterns is achieved.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Broadband Printed Tapered Slot Antenna Fed by CPW Fulfilled with Planar Artificial Magnetic Conductor for X-Band Operation\",\"authors\":\"H. Malekpoor\",\"doi\":\"10.7716/aem.v12i1.2087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-profile printed slot antenna (PSA) backed by broadband planar artificial magnetic conductor (AMC) is introduced in this study. Firstly, a suggested PSA with the radiating tapered slots excited by coplanar-waveguide (CPW) is used to expand the bandwidth in the measured range of 9-11 GHz (S11≤ -10 dB). Then, the suggested planar AMC surface as the ground plane of the antenna is inserted into the PSA to gain improved radiation efficiency. The realized result from the PSA with the 9×9 planar AMC array exhibits -10 dB measured impedance bandwidth from 6.63 to 13.73 GHz (70%). The suggested PSA with AMC compared to the PSA without AMC exhibits a size reduction of 60%, enhanced bandwidth of 50%, and excellent impedance matching with a minimum value of almost -40 dB. The novel AMC unit cell is realized to operate at 10.14 GHz with an AMC bandwidth of 8-12.35 GHz (43.1%) for X-band operation. Besides, by loading a periodic AMC unit cells into PSA, a high gain of more than 11 dBi with uni-directional radiation patterns is achieved.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v12i1.2087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v12i1.2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Broadband Printed Tapered Slot Antenna Fed by CPW Fulfilled with Planar Artificial Magnetic Conductor for X-Band Operation
A low-profile printed slot antenna (PSA) backed by broadband planar artificial magnetic conductor (AMC) is introduced in this study. Firstly, a suggested PSA with the radiating tapered slots excited by coplanar-waveguide (CPW) is used to expand the bandwidth in the measured range of 9-11 GHz (S11≤ -10 dB). Then, the suggested planar AMC surface as the ground plane of the antenna is inserted into the PSA to gain improved radiation efficiency. The realized result from the PSA with the 9×9 planar AMC array exhibits -10 dB measured impedance bandwidth from 6.63 to 13.73 GHz (70%). The suggested PSA with AMC compared to the PSA without AMC exhibits a size reduction of 60%, enhanced bandwidth of 50%, and excellent impedance matching with a minimum value of almost -40 dB. The novel AMC unit cell is realized to operate at 10.14 GHz with an AMC bandwidth of 8-12.35 GHz (43.1%) for X-band operation. Besides, by loading a periodic AMC unit cells into PSA, a high gain of more than 11 dBi with uni-directional radiation patterns is achieved.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.