Mindaugas Luneckas, Tomas Luneckas, D. Udris, D. Plonis, R. Maskeliūnas, R. Damaševičius
{"title":"不规则地形节能行走:以六足机器人为例","authors":"Mindaugas Luneckas, Tomas Luneckas, D. Udris, D. Plonis, R. Maskeliūnas, R. Damaševičius","doi":"10.24425/mms.2019.130562","DOIUrl":null,"url":null,"abstract":"Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles. Without these properties, any walking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering apathplanormovementparameterssuchasspeed,steplengthorstepheight,itisimportanttochoosethemost suitablevariablestosustainlongbatterylifeandtoreachtheobjectiveorcompletethetasksuccessfully.We changethesettingsofahexapodrobotlegtrajectoryforovercomingsmallterrainirregularitiesbyoptimizing consumedenergyandlegtrajectoryduringeachlegtransfer.Thetrajectorysettingsareimplementedas apartofhexapodrobotsimulationmodelandtestedthroughseriesofexperimentswithvariousterrains ofdifferingcomplexityandobstaclesofvarioussizes.Ourresultsshowthattheproposedenergy-efficient trajectorytransformationisaneffectivemethodforminimizingenergyconsumptionandimprovingoverall performance of a walking robot.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Energy-efficient walking over irregular terrain: a case of hexapod robot\",\"authors\":\"Mindaugas Luneckas, Tomas Luneckas, D. Udris, D. Plonis, R. Maskeliūnas, R. Damaševičius\",\"doi\":\"10.24425/mms.2019.130562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles. Without these properties, any walking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering apathplanormovementparameterssuchasspeed,steplengthorstepheight,itisimportanttochoosethemost suitablevariablestosustainlongbatterylifeandtoreachtheobjectiveorcompletethetasksuccessfully.We changethesettingsofahexapodrobotlegtrajectoryforovercomingsmallterrainirregularitiesbyoptimizing consumedenergyandlegtrajectoryduringeachlegtransfer.Thetrajectorysettingsareimplementedas apartofhexapodrobotsimulationmodelandtestedthroughseriesofexperimentswithvariousterrains ofdifferingcomplexityandobstaclesofvarioussizes.Ourresultsshowthattheproposedenergy-efficient trajectorytransformationisaneffectivemethodforminimizingenergyconsumptionandimprovingoverall performance of a walking robot.\",\"PeriodicalId\":18394,\"journal\":{\"name\":\"Metrology and Measurement Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology and Measurement Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/mms.2019.130562\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2019.130562","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Energy-efficient walking over irregular terrain: a case of hexapod robot
Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles. Without these properties, any walking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering apathplanormovementparameterssuchasspeed,steplengthorstepheight,itisimportanttochoosethemost suitablevariablestosustainlongbatterylifeandtoreachtheobjectiveorcompletethetasksuccessfully.We changethesettingsofahexapodrobotlegtrajectoryforovercomingsmallterrainirregularitiesbyoptimizing consumedenergyandlegtrajectoryduringeachlegtransfer.Thetrajectorysettingsareimplementedas apartofhexapodrobotsimulationmodelandtestedthroughseriesofexperimentswithvariousterrains ofdifferingcomplexityandobstaclesofvarioussizes.Ourresultsshowthattheproposedenergy-efficient trajectorytransformationisaneffectivemethodforminimizingenergyconsumptionandimprovingoverall performance of a walking robot.
期刊介绍:
Contributions are invited on all aspects of the research, development and applications of the measurement science and technology.
The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments.
The average publication cycle is 6 months.