基于变异性的结构可靠性预测方法

K. Haas
{"title":"基于变异性的结构可靠性预测方法","authors":"K. Haas","doi":"10.1115/vvs2019-5150","DOIUrl":null,"url":null,"abstract":"\n The often-competing goals of optimization and reliability design amplify the importance of verification, validation, and uncertainty quantification (VVUQ) to achieve sufficient reliability. Evaluation of a system's reliability presents practical challenges given the large number of permutations of conditions that may exist over the system's operational lifecycle. Uncertainty and variability sources are not always well defined and are sometimes not possible to predict, yielding traditional uncertainty quantification (UQ) techniques insufficient. A variability-based method is proposed to bridge this gap in state-of-the-art UQ practice where sources of uncertainty and variability cannot be readily quantified. At the point of incipient structural failure, the structural response becomes highly variable and sensitive to minor perturbations in conditions. This characteristic provides a powerful opportunity to determine the critical failure conditions and to assess the resulting structural reliability through an alternative variability-based method. Nonhierarchical clustering, proximity analysis, and the use of stability indicators are combined to identify the loci of conditions that lead to a rapid evolution of the response toward a failure condition. The method's utility is demonstrated through its application to a simple nonlinear dynamic single-degree-of-freedom structural model. In addition to the L2 norm, a new stability indicator is proposed called the “instability index,” which is a function of both the L2 norm and the calculated proximity to adjacent loci of conditions with differing structural response. The instability index provides a rapidly achieved quantitative measure of the relative stability of the system for all possible loci of conditions.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Structural Reliability Through an Alternative Variability-Based Methodology\",\"authors\":\"K. Haas\",\"doi\":\"10.1115/vvs2019-5150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The often-competing goals of optimization and reliability design amplify the importance of verification, validation, and uncertainty quantification (VVUQ) to achieve sufficient reliability. Evaluation of a system's reliability presents practical challenges given the large number of permutations of conditions that may exist over the system's operational lifecycle. Uncertainty and variability sources are not always well defined and are sometimes not possible to predict, yielding traditional uncertainty quantification (UQ) techniques insufficient. A variability-based method is proposed to bridge this gap in state-of-the-art UQ practice where sources of uncertainty and variability cannot be readily quantified. At the point of incipient structural failure, the structural response becomes highly variable and sensitive to minor perturbations in conditions. This characteristic provides a powerful opportunity to determine the critical failure conditions and to assess the resulting structural reliability through an alternative variability-based method. Nonhierarchical clustering, proximity analysis, and the use of stability indicators are combined to identify the loci of conditions that lead to a rapid evolution of the response toward a failure condition. The method's utility is demonstrated through its application to a simple nonlinear dynamic single-degree-of-freedom structural model. In addition to the L2 norm, a new stability indicator is proposed called the “instability index,” which is a function of both the L2 norm and the calculated proximity to adjacent loci of conditions with differing structural response. The instability index provides a rapidly achieved quantitative measure of the relative stability of the system for all possible loci of conditions.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/vvs2019-5150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/vvs2019-5150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

优化和可靠性设计这两个经常相互竞争的目标放大了验证、确认和不确定性量化(VVUQ)对实现足够可靠性的重要性。考虑到系统运行生命周期中可能存在的大量条件排列,对系统可靠性的评估提出了实际挑战。不确定性和可变性的来源并不总是很好地定义,有时不可能预测,导致传统的不确定性量化(UQ)技术的不足。在不确定性和可变性的来源不能轻易量化的最先进的UQ实践中,提出了一种基于可变性的方法来弥补这一差距。在结构破坏初期,结构响应变得高度可变,对条件下的微小扰动敏感。这一特性为确定关键失效条件和通过基于可选变异性的方法评估结构可靠性提供了强有力的机会。非分层聚类、接近性分析和稳定性指标的使用相结合,以确定导致对故障状态的响应快速演变的条件位点。通过对一个简单的非线性单自由度动力结构模型的应用,证明了该方法的实用性。除了L2范数之外,还提出了一种新的稳定性指标,称为“不稳定性指数”,它是L2范数和计算出的与不同结构响应的相邻条件座的接近度的函数。不稳定性指数为系统在所有可能条件下的相对稳定性提供了一种快速实现的定量度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Structural Reliability Through an Alternative Variability-Based Methodology
The often-competing goals of optimization and reliability design amplify the importance of verification, validation, and uncertainty quantification (VVUQ) to achieve sufficient reliability. Evaluation of a system's reliability presents practical challenges given the large number of permutations of conditions that may exist over the system's operational lifecycle. Uncertainty and variability sources are not always well defined and are sometimes not possible to predict, yielding traditional uncertainty quantification (UQ) techniques insufficient. A variability-based method is proposed to bridge this gap in state-of-the-art UQ practice where sources of uncertainty and variability cannot be readily quantified. At the point of incipient structural failure, the structural response becomes highly variable and sensitive to minor perturbations in conditions. This characteristic provides a powerful opportunity to determine the critical failure conditions and to assess the resulting structural reliability through an alternative variability-based method. Nonhierarchical clustering, proximity analysis, and the use of stability indicators are combined to identify the loci of conditions that lead to a rapid evolution of the response toward a failure condition. The method's utility is demonstrated through its application to a simple nonlinear dynamic single-degree-of-freedom structural model. In addition to the L2 norm, a new stability indicator is proposed called the “instability index,” which is a function of both the L2 norm and the calculated proximity to adjacent loci of conditions with differing structural response. The instability index provides a rapidly achieved quantitative measure of the relative stability of the system for all possible loci of conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
Automatic Ground-Truth Image Labeling for Deep Neural Network Training and Evaluation Using Industrial Robotics and Motion Capture Using Responsive Feedback in Scaling a Gender Norms-Shifting Adolescent Sexual and Reproductive Health Intervention in the Democratic Republic of Congo. A Solution Verification Study For Urans Simulations of Flow Over a 5:1 Rectangular Cylinder Using Grid Convergence Index And Least Squares Procedures Strategies for Computational Fluid Dynamics Validation Experiments On the Verification of Finite Element Determinations of Stress Concentration Factors for Handbooks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1