连接自然语言处理人工智能技术和企业沟通:走向一体化模式

IF 0.7 4区 管理学 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE Informacios Tarsadalom Pub Date : 2020-05-17 DOI:10.22503/INFTARS.XIX.2019.4.7
D. Pintér, P. L. Ihasz
{"title":"连接自然语言处理人工智能技术和企业沟通:走向一体化模式","authors":"D. Pintér, P. L. Ihasz","doi":"10.22503/INFTARS.XIX.2019.4.7","DOIUrl":null,"url":null,"abstract":"Today’s communication channels and media platforms generate a huge amount of data, which - through advanced AI- (Machine Learning) based techniques - can be leveraged to significantly enhance business networking, improve the efficiency of public relations, management, and extend the possible application areas of communication components. As a sub-discipline of AI, Natural Language Processing (NLP) is frequently utilized in the field of corporate communications (CC) to boost target-group satisfaction through information retrieval and automated dialogue services. The findings of this synthetizing study is based on primer qualitative research building on the methodology of deep interviews and focus group research involving experts practicing in the fields of CC and NLP. Based on the feedbacks of the participants a refined CC model was developed, as well as a model mapping conventional NLP techniques onto CC disciplines and tasks they are utilized for.","PeriodicalId":41114,"journal":{"name":"Informacios Tarsadalom","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Natural Language Processing AI techniques and Corporate Communications: towards an integrative model\",\"authors\":\"D. Pintér, P. L. Ihasz\",\"doi\":\"10.22503/INFTARS.XIX.2019.4.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s communication channels and media platforms generate a huge amount of data, which - through advanced AI- (Machine Learning) based techniques - can be leveraged to significantly enhance business networking, improve the efficiency of public relations, management, and extend the possible application areas of communication components. As a sub-discipline of AI, Natural Language Processing (NLP) is frequently utilized in the field of corporate communications (CC) to boost target-group satisfaction through information retrieval and automated dialogue services. The findings of this synthetizing study is based on primer qualitative research building on the methodology of deep interviews and focus group research involving experts practicing in the fields of CC and NLP. Based on the feedbacks of the participants a refined CC model was developed, as well as a model mapping conventional NLP techniques onto CC disciplines and tasks they are utilized for.\",\"PeriodicalId\":41114,\"journal\":{\"name\":\"Informacios Tarsadalom\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacios Tarsadalom\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.22503/INFTARS.XIX.2019.4.7\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacios Tarsadalom","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.22503/INFTARS.XIX.2019.4.7","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

今天的通信渠道和媒体平台产生了大量的数据,通过先进的基于人工智能(机器学习)的技术,这些数据可以被用来显著增强商业网络,提高公共关系、管理的效率,并扩展通信组件的可能应用领域。作为人工智能的一个子学科,自然语言处理(NLP)经常被用于企业通信(CC)领域,通过信息检索和自动对话服务来提高目标群体的满意度。这项综合研究的结果是基于初级定性研究,建立在深度访谈和焦点小组研究的方法基础上,涉及CC和NLP领域的专家。基于参与者的反馈,开发了一个改进的CC模型,以及一个将传统NLP技术映射到CC学科和任务上的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging Natural Language Processing AI techniques and Corporate Communications: towards an integrative model
Today’s communication channels and media platforms generate a huge amount of data, which - through advanced AI- (Machine Learning) based techniques - can be leveraged to significantly enhance business networking, improve the efficiency of public relations, management, and extend the possible application areas of communication components. As a sub-discipline of AI, Natural Language Processing (NLP) is frequently utilized in the field of corporate communications (CC) to boost target-group satisfaction through information retrieval and automated dialogue services. The findings of this synthetizing study is based on primer qualitative research building on the methodology of deep interviews and focus group research involving experts practicing in the fields of CC and NLP. Based on the feedbacks of the participants a refined CC model was developed, as well as a model mapping conventional NLP techniques onto CC disciplines and tasks they are utilized for.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informacios Tarsadalom
Informacios Tarsadalom INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.30
自引率
33.30%
发文量
15
期刊最新文献
„Feltaláltuk újra az internetet?” Szülői bevonódás a digitális nevelésben: szisztematikus szakirodalom-elemzés Makrogazdasági adatok által determinált teniszsikerek 38 OECD-ország elit női játékosának vizsgálatában Az adatműveltség és a kritikai szellem Kiállítási kommunikáció a kiterjesztett térben
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1